15import torch.nn as nn
16
17from labml import experiment, logger
18from labml.configs import option
19from labml_nn.experiments.cifar10 import CIFAR10Configs, CIFAR10VGGModel
20from labml_nn.normalization.batch_norm import BatchNorm23class Configs(CIFAR10Configs):30 pass33class LargeModel(CIFAR10VGGModel):创建卷积层和激活
40 def conv_block(self, in_channels, out_channels) -> nn.Module:44 return nn.Sequential(辍学
46 nn.Dropout(0.1),卷积层
48 nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),批量标准化
50 BatchNorm(out_channels, track_running_stats=False),激活 ReLU
52 nn.ReLU(inplace=True),
53 )55 def __init__(self):使用给定的卷积大小(通道)创建模型
57 super().__init__([[64, 64], [128, 128], [256, 256, 256], [512, 512, 512], [512, 512, 512]])60@option(Configs.model)
61def _large_model(c: Configs):65 return LargeModel().to(c.device)68def main():创建实验
70 experiment.create(name='cifar10', comment='large model')创建配置
72 conf = Configs()装载配置
74 experiment.configs(conf, {
75 'optimizer.optimizer': 'Adam',
76 'optimizer.learning_rate': 2.5e-4,
77 'is_save_models': True,
78 'epochs': 20,
79 })设置保存/加载的模型
81 experiment.add_pytorch_models({'model': conf.model})打印模型中参数的数量
83 logger.inspect(params=(sum(p.numel() for p in conf.model.parameters() if p.requires_grad)))开始实验并运行训练循环
85 with experiment.start():
86 conf.run()90if __name__ == '__main__':
91 main()