13import torch
14from torch import nn
15
16from labml import experiment
17from labml.configs import option
18from labml_helpers.module import Module
19from labml_nn.graphs.gat.experiment import Configs as GATConfigs
20from labml_nn.graphs.gatv2 import GraphAttentionV2Layer23class GATv2(Module):in_features
 is the number of features per node n_hidden
 is the number of features in the first graph attention layer n_classes
 is the number of classes n_heads
 is the number of heads in the graph attention layers dropout
 is the dropout probability share_weights
 if set to True, the same matrix will be applied to the source and the target node of every edge30    def __init__(self, in_features: int, n_hidden: int, n_classes: int, n_heads: int, dropout: float,
31                 share_weights: bool = True):40        super().__init__()First graph attention layer where we concatenate the heads
43        self.layer1 = GraphAttentionV2Layer(in_features, n_hidden, n_heads,
44                                            is_concat=True, dropout=dropout, share_weights=share_weights)Activation function after first graph attention layer
46        self.activation = nn.ELU()Final graph attention layer where we average the heads
48        self.output = GraphAttentionV2Layer(n_hidden, n_classes, 1,
49                                            is_concat=False, dropout=dropout, share_weights=share_weights)Dropout
51        self.dropout = nn.Dropout(dropout)x
 is the features vectors of shape [n_nodes, in_features]
 adj_mat
 is the adjacency matrix of the form  [n_nodes, n_nodes, n_heads]
 or [n_nodes, n_nodes, 1]
53    def forward(self, x: torch.Tensor, adj_mat: torch.Tensor):Apply dropout to the input
60        x = self.dropout(x)First graph attention layer
62        x = self.layer1(x, adj_mat)Activation function
64        x = self.activation(x)Dropout
66        x = self.dropout(x)Output layer (without activation) for logits
68        return self.output(x, adj_mat)Since the experiment is same as GAT experiment but with GATv2 model we extend the same configs and change the model.
71class Configs(GATConfigs):Whether to share weights for source and target nodes of edges
80    share_weights: bool = FalseSet the model
82    model: GATv2 = 'gat_v2_model'Create GATv2 model
85@option(Configs.model)
86def gat_v2_model(c: Configs):90    return GATv2(c.in_features, c.n_hidden, c.n_classes, c.n_heads, c.dropout, c.share_weights).to(c.device)93def main():Create configurations
95    conf = Configs()Create an experiment
97    experiment.create(name='gatv2')Calculate configurations.
99    experiment.configs(conf, {Adam optimizer
101        'optimizer.optimizer': 'Adam',
102        'optimizer.learning_rate': 5e-3,
103        'optimizer.weight_decay': 5e-4,
104
105        'dropout': 0.7,
106    })Start and watch the experiment
109    with experiment.start():Run the training
111        conf.run()115if __name__ == '__main__':
116    main()