Configurable Optimizer

10from typing import Tuple
11
12import torch
13
14from labml.configs import BaseConfigs, option, meta_config
15from labml_nn.optimizers import WeightDecay
18class OptimizerConfigs(BaseConfigs):

Optimizer

26    optimizer: torch.optim.Adam

Weight decay

29    weight_decay_obj: WeightDecay

Whether weight decay is decoupled; i.e. weight decay is not added to gradients

32    weight_decouple: bool = True

Weight decay

34    weight_decay: float = 0.0

Whether weight decay is absolute or should be multiplied by learning rate

36    weight_decay_absolute: bool = False

Whether the adam update is optimized (different epsilon)

39    optimized_adam_update: bool = True

Parameters to be optimized

42    parameters: any

Learning rate $\alpha$

45    learning_rate: float = 0.01

Beta values $(\beta_1, \beta_2)$ for Adam

47    betas: Tuple[float, float] = (0.9, 0.999)

Epsilon $\epsilon$ for adam

49    eps: float = 1e-08

Momentum for SGD

52    momentum: float = 0.5

Whether to use AMSGrad

54    amsgrad: bool = False

Number of warmup optimizer steps

57    warmup: int = 2_000

Total number of optimizer steps (for cosine decay)

59    total_steps: int = int(1e10)

Whether to degenerate to SGD in AdaBelief

62    degenerate_to_sgd: bool = True

Whether to use Rectified Adam in AdaBelief

65    rectify: bool = True

Model embedding size for Noam optimizer

68    d_model: int
70    def __init__(self):
71        super().__init__(_primary='optimizer')
72
73
74meta_config(OptimizerConfigs.parameters)
77@option(OptimizerConfigs.weight_decay_obj, 'L2')
78def _weight_decay(c: OptimizerConfigs):
79    return WeightDecay(c.weight_decay, c.weight_decouple, c.weight_decay_absolute)
80
81
82@option(OptimizerConfigs.optimizer, 'SGD')
83def _sgd_optimizer(c: OptimizerConfigs):
84    return torch.optim.SGD(c.parameters, c.learning_rate, c.momentum)
85
86
87@option(OptimizerConfigs.optimizer, 'Adam')
88def _adam_optimizer(c: OptimizerConfigs):
89    if c.amsgrad:
90        from labml_nn.optimizers.amsgrad import AMSGrad
91        return AMSGrad(c.parameters,
92                       lr=c.learning_rate, betas=c.betas, eps=c.eps,
93                       optimized_update=c.optimized_adam_update,
94                       weight_decay=c.weight_decay_obj, amsgrad=c.amsgrad)
95    else:
96        from labml_nn.optimizers.adam import Adam
97        return Adam(c.parameters,
98                    lr=c.learning_rate, betas=c.betas, eps=c.eps,
99                    optimized_update=c.optimized_adam_update,
100                    weight_decay=c.weight_decay_obj)
101
102
103@option(OptimizerConfigs.optimizer, 'AdamW')
104def _adam_warmup_optimizer(c: OptimizerConfigs):
105    from labml_nn.optimizers.adam_warmup import AdamWarmup
106    return AdamWarmup(c.parameters,
107                      lr=c.learning_rate, betas=c.betas, eps=c.eps,
108                      weight_decay=c.weight_decay_obj, amsgrad=c.amsgrad, warmup=c.warmup)
109
110
111@option(OptimizerConfigs.optimizer, 'RAdam')
112def _radam_optimizer(c: OptimizerConfigs):
113    from labml_nn.optimizers.radam import RAdam
114    return RAdam(c.parameters,
115                 lr=c.learning_rate, betas=c.betas, eps=c.eps,
116                 weight_decay=c.weight_decay_obj, amsgrad=c.amsgrad,
117                 degenerated_to_sgd=c.degenerate_to_sgd)
118
119
120@option(OptimizerConfigs.optimizer, 'AdaBelief')
121def _ada_belief_optimizer(c: OptimizerConfigs):
122    from labml_nn.optimizers.ada_belief import AdaBelief
123    return AdaBelief(c.parameters,
124                     lr=c.learning_rate, betas=c.betas, eps=c.eps,
125                     weight_decay=c.weight_decay_obj, amsgrad=c.amsgrad,
126                     degenerate_to_sgd=c.degenerate_to_sgd,
127                     rectify=c.rectify)
128
129
130@option(OptimizerConfigs.optimizer, 'Noam')
131def _noam_optimizer(c: OptimizerConfigs):
132    from labml_nn.optimizers.noam import Noam
133    return Noam(c.parameters,
134                lr=c.learning_rate, betas=c.betas, eps=c.eps,
135                weight_decay=c.weight_decay_obj, amsgrad=c.amsgrad, warmup=c.warmup,
136                d_model=c.d_model)
137
138
139@option(OptimizerConfigs.optimizer, 'AdamWarmupCosineDecay')
140def _noam_optimizer(c: OptimizerConfigs):
141    from labml_nn.optimizers.adam_warmup_cosine_decay import AdamWarmupCosineDecay
142    return AdamWarmupCosineDecay(c.parameters,
143                                 lr=c.learning_rate, betas=c.betas, eps=c.eps,
144                                 weight_decay=c.weight_decay_obj, amsgrad=c.amsgrad,
145                                 warmup=c.warmup, total_steps=c.total_steps)