13import fairscale
14import torch
15import torch.nn as nn
16import torch.utils.data
17import torch.utils.data
18import typing
19from torch.utils.data import DataLoader, RandomSampler
20
21from labml import experiment, monit, tracker, lab
22from labml.configs import option
23from labml.logger import inspect
24from labml_nn.neox.utils.text_dataset import get_training_data
25from labml_nn.neox.utils.finetune import FineTuneBiases
26from labml_nn.neox.model import LayerGenerator, NeoXModule
27from labml_nn.neox.utils import balance_layers_simple
28from labml_nn.neox.utils.trainer import PipelineParallelTrainerConf31@option(PipelineParallelTrainerConf.layers, 'PipelineBiases')
32def neox_layers(c: PipelineParallelTrainerConf):36    return list(LayerGenerator(is_clone_layers=c.is_clone_layers,
37                               filter_layers=c.filter_layers,
38                               dtype=c.dtype,
39                               ).load())42@option(PipelineParallelTrainerConf.fine_tuner, 'PipelineBiases')
43def fine_tune_biases(c: PipelineParallelTrainerConf):48    fine_tuner = FineTuneBiases(typing.cast(typing.List[NeoXModule], c.layers))Mark biases as trainable
50    fine_tuner.set_trainable_params()53    return fine_tuner56@option(PipelineParallelTrainerConf.model, 'PipelineBiases')
57def pipe_model(c: PipelineParallelTrainerConf):62    if c.is_checkpointing:
63        raise NotImplementedError()
64    else:
65        layers = c.layersMake sure the finetuner is initialized
68    _ = c.fine_tunerCreate the Pipe module
71    with monit.section('Pipe'):Get the layer distribution across GPUs
73        balance = balance_layers_simple(len(layers), c.n_gpus)
74        inspect(balance=balance)Devices for each GPU
76        devices = [torch.device(f'cuda:{i}') for i in range(c.n_gpus)]Create Fairscale Pipe module
78        pipe_model = fairscale.nn.Pipe(nn.Sequential(*layers),
79                                       balance=balance,
80                                       devices=devices,
81                                       chunks=c.chunks)84    return pipe_model87@option(PipelineParallelTrainerConf.train_loader)
88def tiny_shakespeare(c: PipelineParallelTrainerConf):92    dataset = get_training_data(c.max_seq_len)
93
94    return DataLoader(dataset,
95                      batch_size=c.batch_size,
96                      sampler=RandomSampler(dataset, replacement=True))99def main():Create experiment
101    experiment.create(name='pipe_neox_biases',
102                      writers={'screen', 'web_api'})Initialize configs
105    conf = PipelineParallelTrainerConf()
106    experiment.configs(conf, {
107        'learning_rate': 3e-4,
108        'is_checkpointing': False,
109        'max_seq_len': 128,
110        'batch_size': 64,
111        'chunks': 8,
112    })Start the experiment
115    with experiment.start():Initialize the model. Do this before the loop for cleaner logs.
117        _ = conf.modelTrain
120        for epoch in monit.loop(conf.epochs):
121            conf.train_epoch()
122            tracker.new_line()
123            torch.save(conf.fine_tuner.state_dict(), str(lab.get_data_path() / 'fine_tune.pt'))127if __name__ == '__main__':
128    main()