""" # [LabML Neural Networks](index.html) This is a collection of simple PyTorch implementations of neural networks and related algorithms. [These implementations](https://github.com/lab-ml/nn) are documented with explanations, and the [website](index.html) renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better. We are actively maintaining this repo and adding new implementations. ## Modules #### ✨ [Transformers](transformers/index.html) * [Multi-headed attention](transformers/mha.html) * [Transformer building blocks](transformers/models.html) * [Relative multi-headed attention](transformers/xl/relative_mha.html). * [GPT Architecture](transformers/gpt/index.html) * [GLU Variants](transformers/glu_variants/simple.html) * [kNN-LM: Generalization through Memorization](transformers/knn/index.html) * [Feedback Transformer](transformers/feedback/index.html) * [Switch Transformer](transformers/switch/index.html) #### ✨ [Recurrent Highway Networks](recurrent_highway_networks/index.html) #### ✨ [LSTM](lstm/index.html) #### ✨ [HyperNetworks - HyperLSTM](hypernetworks/hyper_lstm.html) #### ✨ [Capsule Networks](capsule_networks/index.html) #### ✨ [Generative Adversarial Networks](gan/index.html) * [GAN with a multi-layer perceptron](gan/simple_mnist_experiment.html) * [GAN with deep convolutional network](gan/dcgan.html) * [Cycle GAN](gan/cycle_gan.html) #### ✨ [Sketch RNN](sketch_rnn/index.html) #### ✨ [Reinforcement Learning](rl/index.html) * [Proximal Policy Optimization](rl/ppo/index.html) with [Generalized Advantage Estimation](rl/ppo/gae.html) * [Deep Q Networks](rl/dqn/index.html) with with [Dueling Network](rl/dqn/model.html), [Prioritized Replay](rl/dqn/replay_buffer.html) and Double Q Network. #### ✨ [Optimizers](optimizers/index.html) * [Adam](optimizers/adam.html) * [AMSGrad](optimizers/amsgrad.html) * [Adam Optimizer with warmup](optimizers/adam_warmup.html) * [Noam Optimizer](optimizers/noam.html) * [Rectified Adam Optimizer](optimizers/radam.html) * [AdaBelief Optimizer](optimizers/ada_belief.html) #### ✨ [Normalization Layers](https://nn.labml.ai/normalization/index.html) * [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html) * [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html) ### Installation ```bash pip install labml-nn ``` ### Citing LabML If you use LabML for academic research, please cite the library using the following BibTeX entry. ```bibtex @misc{labml, author = {Varuna Jayasiri, Nipun Wijerathne}, title = {LabML: A library to organize machine learning experiments}, year = {2020}, url = {https://lab-ml.com/}, } ``` """