11from pathlib import Path
12from typing import Dict, Union, Tuple, Optional
13
14import torch
15from torch import nn
16
17from labml import monit, lab, logger
18from labml.logger import Text, inspect
19from labml.utils.download import download_file家长网址
22CHECKPOINTS_URL = 'https://mystic.the-eye.eu/public/AI/models/GPT-NeoX-20B/slim_weights/'
23
24_CHECKPOINTS_DOWNLOAD_PATH: Optional[Path] = None下载路径
28def get_checkpoints_download_path():
29    global _CHECKPOINTS_DOWNLOAD_PATH
30
31    if _CHECKPOINTS_DOWNLOAD_PATH is not None:
32        return _CHECKPOINTS_DOWNLOAD_PATH
33
34    _CHECKPOINTS_DOWNLOAD_PATH = lab.get_data_path() / 'neox_fast' / 'slim_weights'
35    if not _CHECKPOINTS_DOWNLOAD_PATH.exists():
36        _CHECKPOINTS_DOWNLOAD_PATH = lab.get_data_path() / 'neox' / 'slim_weights'
37    inspect(neox_checkpoint_path=_CHECKPOINTS_DOWNLOAD_PATH)
38
39    return _CHECKPOINTS_DOWNLOAD_PATH42def get_files_to_download(n_layers: int = 44):48    layers = (嵌入层
50            [0] +变压器层
52            list(range(2, 2 + n_layers)) +最终归一化层和读出层
54            [47, 48]
55    )
56
57    return (词汇和配置
59            ['20B_tokenizer.json', 'configs/20B.yml', 'latest'] +图层检查点
61            [f'global_step150000/layer_{i :02d}-model_{p :02d}-model_states.pt' for i in layers for p in range(2)] +空状态(未使用)
63            [f'global_step150000/mp_rank_{i :02d}_model_states.pt' for i in range(8)]
64    )67def download(n_layers: int = 44):获取要下载的文件
73    files = get_files_to_download(n_layers)迭代
76    for i, f in monit.enum('Download All', files):日志
78        logger.log(['Downloading ', (f'{i + 1 :3d}/{len(files)}', Text.meta), ': ', (f, Text.value)])下载
80        download_file(CHECKPOINTS_URL + f, get_checkpoints_download_path() / f)83def load_checkpoint_files(files: Tuple[str, str]):90    checkpoint_path = get_checkpoints_download_path() / 'global_step150000'
91    with monit.section('Load checkpoint'):
92        data = [torch.load(checkpoint_path / f) for f in files]
93
94    return data97def merge_params_dim_0(param: Union[nn.Parameter, torch.Tensor], key: str, p1: Dict[str, torch.Tensor],
98                       p2: Dict[str, torch.Tensor]):107    w1, w2 = p1[key], p2[key]
108    param.data[:w1.shape[0]] = w1
109    param.data[w1.shape[0]:] = w2112def merge_params_dim_1(param: Union[nn.Parameter, torch.Tensor], key: str, p1: Dict[str, torch.Tensor],
113                       p2: Dict[str, torch.Tensor]):122    w1, w2 = p1[key], p2[key]
123    param.data[:, :w1.shape[1]] = w1
124    param.data[:, w1.shape[1]:] = w2127def merge_params_duplicate(param: Union[nn.Parameter, torch.Tensor], key: str, p1: Dict[str, torch.Tensor],
128                           p2: Dict[str, torch.Tensor]):139    w1, w2 = p1[key], p2[key]
140
141    diff = sum((w1 - w2) ** 2).item()
142    assert diff < 1e-4, f'The partitions do not match: {key}'
143
144    param.data[:] = (w1 + w2) / 2.147def merge_params_sum(param: Union[nn.Parameter, torch.Tensor], key: str, p1: Dict[str, torch.Tensor],
148                     p2: Dict[str, torch.Tensor]):157    w1, w2 = p1[key], p2[key]
158
159    param.data[:] = w1 + w2163if __name__ == '__main__':
164    download()