3import torch
4import torchvision
5import torchvision.transforms as transforms
6
7import torch.nn as nn
8import torch.nn.functional as F
9
10import matplotlib.pyplot as plt
11import numpy as np
12
13from sklearn.model_selection import KFold
14from torch.utils.data.sampler import SubsetRandomSampler
Plot the loss of multiple runs together
19def PlotLosses(losses, titles, save=None):
20 fig = plt.figure()
21 fig.set_size_inches(14, 22)
Plot results on 3 subgraphs subplot integers: nrows ncols index
27 sublplot_str_start = "" + str(len(losses)) + "1"
28
29 for i in range(len(losses)):
30 subplot = sublplot_str_start + str(i+1)
31 loss = losses[i]
32 title = titles[i]
33
34 ax = plt.subplot(int(subplot))
35 ax.plot(range(len(loss)), loss)
36 ax.set_xlabel("Epoch")
37 ax.set_title(title)
38 ax.set_ylabel("Loss")
Save Figure
41 if save:
42 plt.savefig(save)
43 else:
44 plt.show()
48def ClassSpecificTestCifar10(net, testdata, device=None):
49 classes = ('plane', 'car', 'bird', 'cat','deer', 'dog', 'frog', 'horse', 'ship', 'truck')
50 class_correct = list(0. for i in range(10))
51 class_total = list(0. for i in range(10))
52 with torch.no_grad():
53 for data in testdata:
54 if device:
55 images, labels = data[0].to(device), data[1].to(device)
56 else:
57 images, labels = data
58
59 outputs = net(images)
60 _, predicted = torch.max(outputs, 1)
61 c = (predicted == labels).squeeze()
62 for i in range(4):
63 label = labels[i]
64 class_correct[label] += c[i].item()
65 class_total[label] += 1
Print out
68 for i in range(10):
69 print('Accuracy of %5s : %2d %%' % (
70 classes[i], 100 * class_correct[i] / class_total[i]))
74def GetActivation(name="relu"):
75 if name == "relu":
76 return nn.ReLU()
77 elif name == "leakyrelu":
78 return nn.LeakyReLU()
79 elif name == "Sigmoid":
80 return nn.Sigmoid()
81 elif name == "Tanh":
82 return nn.Tanh()
83 elif name == "Identity":
84 return nn.Identity()
85 else:
86 return nn.ReLU()