3import torch.nn as nn
4import torch.optim as optim
5from torchsummary import summary
6from functools import partial
7from skimage.filters import sobel, sobel_h, roberts
8from models.cnn import CNN
9from utils.dataloader import *
10from utils.train import Trainer
Check if GPU is available
13device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
14print("Device: " + str(device))
Cifar 10 Datasets location
17save='./data/Cifar10'
Transformations train
20transform_train = transforms.Compose(
21 [transforms.ToTensor(),
22 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
Load train dataset and dataloader
25trainset = LoadCifar10DatasetTrain(save, transform_train)
26trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
27 shuffle=True, num_workers=4)
Transformations test
30transform_test = transforms.Compose(
31 [transforms.ToTensor(),
32 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
Load test dataset and dataloader
35testset = LoadCifar10DatasetTest(save, transform_test)
36testloader = torch.utils.data.DataLoader(testset, batch_size=64,
37 shuffle=False, num_workers=4)
Create CNN model
40def GetCNN():
41 cnn = CNN( in_features=(32,32,3),
42 out_features=10,
43 conv_filters=[32,32,64,64],
44 conv_kernel_size=[3,3,3,3],
45 conv_strides=[1,1,1,1],
46 conv_pad=[0,0,0,0],
47 max_pool_kernels=[None, (2,2), None, (2,2)],
48 max_pool_strides=[None,2,None,2],
49 use_dropout=False,
50 use_batch_norm=True, #False
51 actv_func=["relu", "relu", "relu", "relu"],
52 device=device
53 )
54
55 return cnn
56
57model = GetCNN()
Display model specifications
60summary(model, (3,32,32))
Send model to GPU
63model.to(device)
Specify optimizer
66opt = optim.Adam(model.parameters(), lr=0.0005, betas=(0.9, 0.95))
Specify loss function
69cost = nn.CrossEntropyLoss()
Train the model
72trainer = Trainer(device=device, name="Basic_CNN")
73epochs = 5
74trainer.Train(model, trainloader, testloader, cost=cost, opt=opt, epochs=epochs)
Load best saved model for inference
77model_loaded = GetCNN()
Specify location of saved model
80PATH = "./save/Basic_CNN-best-model/model.pt"
81checkpoint = torch.load(PATH)
load the saved model
84model_loaded.load_state_dict(checkpoint['state_dict'])
intialization for hooks and storing activation of ReLU layers
87activation = {}
88hooks = []
Hook function saves activation of a particular layer
91def hook_fn(model, input, output, name):
92 activation[name] = output.cpu().detach().numpy()
Registering hooks
95count =0
96conv_count = 0
97for name, layer in model_loaded.named_modules():
98 if isinstance(layer, nn.ReLU):
99 count +=1
100 hook = layer.register_forward_hook(partial(hook_fn, name=f"{layer._get_name()}-{count}")) #f"{type(layer).__name__}-{name}"
101 hooks.append(hook)
102 if isinstance(layer, nn.Conv2d):
103 conv_count += 1
Displaying image used for inference
106data, _ = trainset[15]
107imshow(data)
Infering model to save activation of ReLU layers
110output = model_loaded(data[None].to(device))
Removing hooks
113for hook in hooks:
114 hook.remove()
Function to display output of a particular ReLU layer
117def output_one_layer(layer_num):
118 assert 1 <= layer_num <= len(activation), "Wrong layer number"
119
120 layer_name = f"ReLu-{layer_num}"
121 act = activation[f"ReLU-{layer_num}"]
122 if act.shape[1]==32:
123 rows = 4
124 columns = 8
125 elif act.shape[1]==64:
126 rows = 8
127 columns = 8
128
129 fig = plt.figure(figsize=(rows, columns))
130 for idx in range(1, columns * rows + 1):
131 fig.add_subplot(rows, columns, idx)
132 plt.imshow(sobel(act[0][idx-1]), cmap=plt.cm.gray)
try different filters plt.imshow(act[0][idx-1], cmap=’viridis’, vmin=0, vmax=act.max()) plt.imshow(act[0][idx - 1], cmap=’hot’) plt.imshow(roberts(act[0][idx - 1]), cmap=plt.cm.gray) plt.imshow(sobel_h(act[0][idx-1]), cmap=plt.cm.gray)
140 plt.axis('off')
141
142 plt.tight_layout()
143 plt.show()
Function to display output of all ReLU layer after Convulution layers
146def output_all_layers():
147 for [name, output], count in zip(activation.items(), range(conv_count)):
148 if output.shape[1] == 32:
149 _, axs = plt.subplots(8, 4, figsize=(8, 4))
150 elif output.shape[1] == 64:
151 _, axs = plt.subplots(8, 8, figsize=(8, 8))
152
153 for ax, out in zip(np.ravel(axs), output[0]):
154 ax.imshow(sobel(out), cmap=plt.cm.gray)
155 ax.axis('off')
156
157 plt.suptitle(name)
158 plt.tight_layout()
159 plt.show()
Choose either one to display
162output_one_layer(layer_num=3) # choose layer number
163output_all_layers()