3from utils.train import Trainer # Default custom training class
4from models.resnet import *
5from torchvision import modelsGPU Check
8device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
9print("Device: " + str(device))Use different train/test data augmentations
12transform_test = transforms.Compose(
13 [transforms.ToTensor(),
14 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])Get Cifar 10 Datasets
17save='./data/Cifar10'
18transform_train = transforms.Compose([
19 transforms.RandomHorizontalFlip(p=1.0),
20 transforms.RandomRotation(20),
21 transforms.RandomCrop(32, (2, 2), pad_if_needed=False, padding_mode='constant'),
22 transforms.ToTensor(),
23 transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])Get Cifar 10 Datasets
26trainset = torchvision.datasets.CIFAR10(root=save, train=True, download=True, transform=transform_train)
27testset = torchvision.datasets.CIFAR10(root=save, train=False, download=True, transform=transform_test)Get Cifar 10 Dataloaders
30trainloader = torch.utils.data.DataLoader(trainset, batch_size=64,
31 shuffle=True, num_workers=4)
32
33testloader = torch.utils.data.DataLoader(testset, batch_size=64,
34 shuffle=False, num_workers=4)Load the pre-trained model
40model_ft = models.resnet18(pretrained=True)
41num_ftrs = model_ft.fc.in_features
42model_ft.fc = nn.Sequential(
43 nn.Dropout(0.5),
44 nn.Linear(num_ftrs, 10)
45)
46
47
48model_ft = model_ft.to(device)Loss function
51cost = nn.CrossEntropyLoss()Optimizer
54lr = 0.0005opt = optim.SGD(model_ft.parameters(), lr=lr, momentum=0.9)
56opt = torch.optim.Adam(model_ft.parameters(), lr=lr, betas=(0.9, 0.95), weight_decay=1e-4) #0.0005 l2_factor.item()Create a trainer
59trainer = Trainer(model_ft, opt, cost, name="Transfer-learning",lr=lr , use_lr_schedule=True, device=device)Run training
62epochs = 25
63trainer.Train(trainloader, epochs, testloader=testloader)trainer.Train(trainloader, epochs) # check train error
66print('done')