14import math
15
16import torch
17import torch.nn as nn
18
19from labml_nn.utils import clone_module_list
20from .feed_forward import FeedForward
21from .mha import MultiHeadAttention
22from .positional_encoding import get_positional_encoding
25class EmbeddingsWithPositionalEncoding(nn.Module):
32 def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
33 super().__init__()
34 self.linear = nn.Embedding(n_vocab, d_model)
35 self.d_model = d_model
36 self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len))
38 def forward(self, x: torch.Tensor):
39 pe = self.positional_encodings[:x.shape[0]].requires_grad_(False)
40 return self.linear(x) * math.sqrt(self.d_model) + pe
43class EmbeddingsWithLearnedPositionalEncoding(nn.Module):
50 def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
51 super().__init__()
52 self.linear = nn.Embedding(n_vocab, d_model)
53 self.d_model = d_model
54 self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1, d_model), requires_grad=True)
56 def forward(self, x: torch.Tensor):
57 pe = self.positional_encodings[:x.shape[0]]
58 return self.linear(x) * math.sqrt(self.d_model) + pe
This can act as an encoder layer or a decoder layer.
🗒 Some implementations, including the paper seem to have differences in where the layer-normalization is done. Here we do a layer normalization before attention and feed-forward networks, and add the original residual vectors. Alternative is to do a layer normalization after adding the residuals. But we found this to be less stable when training. We found a detailed discussion about this in the paper On Layer Normalization in the Transformer Architecture.
61class TransformerLayer(nn.Module):
d_model
is the token embedding size self_attn
is the self attention module src_attn
is the source attention module (when this is used in a decoder) feed_forward
is the feed forward module dropout_prob
is the probability of dropping out after self attention and FFN79 def __init__(self, *,
80 d_model: int,
81 self_attn: MultiHeadAttention,
82 src_attn: MultiHeadAttention = None,
83 feed_forward: FeedForward,
84 dropout_prob: float):
92 super().__init__()
93 self.size = d_model
94 self.self_attn = self_attn
95 self.src_attn = src_attn
96 self.feed_forward = feed_forward
97 self.dropout = nn.Dropout(dropout_prob)
98 self.norm_self_attn = nn.LayerNorm([d_model])
99 if self.src_attn is not None:
100 self.norm_src_attn = nn.LayerNorm([d_model])
101 self.norm_ff = nn.LayerNorm([d_model])
Whether to save input to the feed forward layer
103 self.is_save_ff_input = False
105 def forward(self, *,
106 x: torch.Tensor,
107 mask: torch.Tensor,
108 src: torch.Tensor = None,
109 src_mask: torch.Tensor = None):
Normalize the vectors before doing self attention
111 z = self.norm_self_attn(x)
Run through self attention, i.e. keys and values are from self
113 self_attn = self.self_attn(query=z, key=z, value=z, mask=mask)
Add the self attention results
115 x = x + self.dropout(self_attn)
If a source is provided, get results from attention to source. This is when you have a decoder layer that pays attention to encoder outputs
120 if src is not None:
Normalize vectors
122 z = self.norm_src_attn(x)
Attention to source. i.e. keys and values are from source
124 attn_src = self.src_attn(query=z, key=src, value=src, mask=src_mask)
Add the source attention results
126 x = x + self.dropout(attn_src)
Normalize for feed-forward
129 z = self.norm_ff(x)
Save the input to the feed forward layer if specified
131 if self.is_save_ff_input:
132 self.ff_input = z.clone()
Pass through the feed-forward network
134 ff = self.feed_forward(z)
Add the feed-forward results back
136 x = x + self.dropout(ff)
137
138 return x
141class Encoder(nn.Module):
148 def __init__(self, layer: TransformerLayer, n_layers: int):
149 super().__init__()
Make copies of the transformer layer
151 self.layers = clone_module_list(layer, n_layers)
Final normalization layer
153 self.norm = nn.LayerNorm([layer.size])
155 def forward(self, x: torch.Tensor, mask: torch.Tensor):
Run through each transformer layer
157 for layer in self.layers:
158 x = layer(x=x, mask=mask)
Finally, normalize the vectors
160 return self.norm(x)
163class Decoder(nn.Module):
170 def __init__(self, layer: TransformerLayer, n_layers: int):
171 super().__init__()
Make copies of the transformer layer
173 self.layers = clone_module_list(layer, n_layers)
Final normalization layer
175 self.norm = nn.LayerNorm([layer.size])
177 def forward(self, x: torch.Tensor, memory: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):
Run through each transformer layer
179 for layer in self.layers:
180 x = layer(x=x, mask=tgt_mask, src=memory, src_mask=src_mask)
Finally, normalize the vectors
182 return self.norm(x)
This predicts the tokens and gives the lof softmax of those. You don't need this if you are using nn.CrossEntropyLoss
.
185class Generator(nn.Module):
195 def __init__(self, n_vocab: int, d_model: int):
196 super().__init__()
197 self.projection = nn.Linear(d_model, n_vocab)
199 def forward(self, x):
200 return self.projection(x)
203class EncoderDecoder(nn.Module):
210 def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: nn.Module, tgt_embed: nn.Module, generator: nn.Module):
211 super().__init__()
212 self.encoder = encoder
213 self.decoder = decoder
214 self.src_embed = src_embed
215 self.tgt_embed = tgt_embed
216 self.generator = generator
This was important from their code. Initialize parameters with Glorot / fan_avg.
220 for p in self.parameters():
221 if p.dim() > 1:
222 nn.init.xavier_uniform_(p)
224 def forward(self, src: torch.Tensor, tgt: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):
Run the source through encoder
226 enc = self.encode(src, src_mask)
Run encodings and targets through decoder
228 return self.decode(enc, src_mask, tgt, tgt_mask)
230 def encode(self, src: torch.Tensor, src_mask: torch.Tensor):
231 return self.encoder(self.src_embed(src), src_mask)
233 def decode(self, memory: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
234 return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)