This is an annotated PyTorch experiment to train a transformer model with Rotary Positional Embeddings (RoPE).
14from labml import experiment
15from labml.configs import option, calculate
16from labml_nn.transformers import TransformerConfigs
17from labml_nn.transformers.basic.autoregressive_experiment import AutoregressiveTransformer, Configs21def _rotary_pe_mha(c: TransformerConfigs):
22    from labml_nn.transformers.rope import RotaryPEMultiHeadAttention
23    return RotaryPEMultiHeadAttention(c.n_heads, c.d_model, 1.)Configuration options
27calculate(TransformerConfigs.encoder_attn, 'rotary', _rotary_pe_mha)
28calculate(TransformerConfigs.decoder_attn, 'rotary', _rotary_pe_mha)
29calculate(TransformerConfigs.decoder_mem_attn, 'rotary', _rotary_pe_mha)Create an autoregressive model and initialize weights
32@option(Configs.model, 'rotary_pe_transformer')
33def _model(c: Configs):37    m = AutoregressiveTransformer(c.transformer.encoder,
38                                  c.transformer.src_embed,
39                                  c.transformer.generator).to(c.device)
40
41    return m44def main():Create experiment
46    experiment.create(name="rotary_pe_transformer", writers={'screen'})Create configs
48    conf = Configs()Override configurations
50    experiment.configs(conf, {No fixed positional embeddings
52        'transformer.src_embed': 'no_pos',
53        'transformer.tgt_embed': 'no_pos',Encoder with RoPE
56        'transformer.encoder_attn': 'rotary',59        'model': 'rotary_pe_transformer',Use character level tokenizer
62        'tokenizer': 'character',Prompt separator is blank
64        'prompt_separator': '',Starting prompt for sampling
66        'prompt': 'It is ',Use Tiny Shakespeare dataset
68        'text': 'tiny_shakespeare',Use a context size of
71        'seq_len': 512,Train for 32 epochs
73        'epochs': 32,Batch size
75        'batch_size': 4,Switch between training and validation for times per epoch
78        'inner_iterations': 10,Model size
81        'd_model': 128,
82        'transformer.ffn.d_ff': 512,
83        'transformer.n_heads': 16,
84        'transformer.dropout': 0.0,Use Noam optimizer
87        'optimizer.optimizer': 'Noam',
88        'optimizer.learning_rate': 1.,
89
90        'dataloader_shuffle_with_replacement': True
91    })Set models for saving and loading
94    experiment.add_pytorch_models({'model': conf.model})Start the experiment
97    with experiment.start():Run training
99        conf.run()103if __name__ == '__main__':
104    main()