Here's the training code for training a GPT2 model with LoRA on Tiny Shakespeare dataset.
13import torch
14import torch.nn as nn
15
16from labml_nn.lora import Linear, Embedding19class FFN(nn.Module):d_model
  is the number of dimensions d_ff
  is the size of the hidden dimension r
  is the lora rank24    def __init__(self, d_model: int, d_ff: int, r: int):30        super().__init__()The linear layers and the activation
33        self.linear_in = Linear(d_model, d_ff, r=r, bias=True)
34        self.linear_out = Linear(d_ff, d_model, r=r, bias=True)
35        self.act = nn.GELU()x
  is the embeddings tensor with shape [batch_size, seq_len, d_model]
37    def forward(self, x: torch.Tensor) -> torch.Tensor:41        x = self.linear_in(x)
42        x = self.act(x)
43        x = self.linear_out(x)
44        return x47class MultiHeadAttention(nn.Module):d_model
  is the number of dimensions in the embeddings n_heads
  is the number of heads r
  is the lora rank52    def __init__(self, d_model: int, n_heads: int, r: int):58        super().__init__()
59        self.d_model = d_model
60        self.n_heads = n_heads
61        self.d_head = d_model // n_headsLinear transformation for QKV
64        self.qkv_projection = Linear(d_model, d_model * 3, r=r, bias=True)Output projection
66        self.output_projection = Linear(d_model, d_model, r=r, bias=True)x
  is the tensor with shape [batch_size, seq_len, d_model]
68    def _split_heads(self, x: torch.Tensor):Split last dimension to [n_heads, d_head]
 
73        x = x.view(x.shape[:-1] + (self.n_heads, self.d_head))Reorder to [batch_size, head, seq_length, d_head]
 
75        return x.permute(0, 2, 1, 3)x
  is the embeddings tensor with shape [batch_size, seq_len, d_model]
77    def forward(self, x: torch.Tensor) -> torch.Tensor:81        batch_size, seq_length, _ = x.shapeGet query, key and value
84        q, k, v = self.qkv_projection(x).split(self.d_model, dim=-1)Transform them from shape [batch_size, seq_len, d_model]
 to [batch_size, head, seq_length, d_head]
 
87        q = self._split_heads(q)
88        k = self._split_heads(k)
89        v = self._split_heads(v)Apply causal attention
92        attn_output = torch.nn.functional.scaled_dot_product_attention(q, k, v, is_causal=True)Transform them from shape [batch_size, head, seq_length, d_head]
 to [batch_size, seq_len, d_model]
 
95        attn_output = attn_output.permute(0, 2, 1, 3).reshape(batch_size, seq_length, self.d_model)Final project
98        return self.output_projection(attn_output)101class Block(nn.Module):d_model
  is the number of dimensions in the embeddings n_heads
  is the number of heads layer_norm_epsilon
  is the layer norm epsilon r
  is the lora rank106    def __init__(self, d_model: int, n_heads: int, layer_norm_epsilon: float, r: int):113        super().__init__()Attention pre-normalization layer
115        self.attn_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)Attention layer
117        self.attn = MultiHeadAttention(d_model, n_heads, r)FFN pre-normalization layer
119        self.ffn_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)Feed-forward network
121        self.ffn = FFN(d_model, d_model * 4, r)x
  is the embeddings tensor with shape [batch_size, seq_len, d_model]
123    def forward(self, x: torch.Tensor) -> torch.Tensor:Attention
128        x = x + self.attn(self.attn_norm(x))FFN
130        x = x + self.ffn(self.ffn_norm(x))
131
132        return x135class GPTModel(nn.Module):d_model
  is the number of dimensions in the embeddings n_heads
  is the number of attention heads n_layers
  is the number of decoder layers n_positions
  is the number of positional embeddings layer_norm_epsilon
  is the layer norm epsilon vocab_size
  is the vocabulary size r
  is the lora rank140    def __init__(self, *, d_model: int,
141                 n_heads: int, n_layers: int,
142                 n_positions: int,
143                 layer_norm_epsilon: float,
144                 vocab_size: int, r: int):154        super().__init__()Token and absolute positional embeddings
157        self.token_embedding = Embedding(vocab_size, d_model, r=r)
158        self.position_embedding = Embedding(n_positions, d_model, r=r)Decoder blocks
161        self.blocks = nn.ModuleList([Block(d_model, n_heads, layer_norm_epsilon, r=r)
162                                     for _ in range(n_layers)])Final layer norm
165        self.final_norm = nn.LayerNorm(d_model, eps=layer_norm_epsilon)Projection layer to logit space
167        self.lm_head = Linear(d_model, vocab_size, r=r, bias=False)input_ids
  has shape [batch_size, seq_len]
169    def forward(self, input_ids: torch.Tensor):173        batch_size, seq_len = input_ids.shapeGet token embeddings
176        token_embeddings = self.token_embedding(input_ids)Get position ids
178        position_ids = torch.arange(seq_len, device=input_ids.device)[None, :]Get position embeddings
180        position_embeddings = self.position_embedding(position_ids)Add position embeddings
183        x = token_embeddings + position_embeddingsRun through transformer blocks
186        for block in self.blocks:
187            x = block(x)Final normalization
190        x = self.final_norm(x)Get logits from projection layer
192        return self.lm_head(x)