14import math
15
16import torch
17import torch.nn as nn
18from labml_helpers.module import Module
19
20from labml_nn.utils import clone_module_list
21from .feed_forward import FeedForward
22from .mha import MultiHeadAttention
23from .positional_encoding import get_positional_encoding26class EmbeddingsWithPositionalEncoding(Module):33    def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
34        super().__init__()
35        self.linear = nn.Embedding(n_vocab, d_model)
36        self.d_model = d_model
37        self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len))39    def forward(self, x: torch.Tensor):
40        pe = self.positional_encodings[:x.shape[0]].requires_grad_(False)
41        return self.linear(x) * math.sqrt(self.d_model) + pe44class EmbeddingsWithLearnedPositionalEncoding(Module):51    def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
52        super().__init__()
53        self.linear = nn.Embedding(n_vocab, d_model)
54        self.d_model = d_model
55        self.positional_encodings = nn.Parameter(torch.zeros(max_len, 1, d_model), requires_grad=True)57    def forward(self, x: torch.Tensor):
58        pe = self.positional_encodings[:x.shape[0]]
59        return self.linear(x) * math.sqrt(self.d_model) + peThis can act as an encoder layer or a decoder layer.
🗒 Some implementations, including the paper seem to have differences in where the layer-normalization is done. Here we do a layer normalization before attention and feed-forward networks, and add the original residual vectors. Alternative is to do a layer normalization after adding the residuals. But we found this to be less stable when training. We found a detailed discussion about this in the paper On Layer Normalization in the Transformer Architecture.
62class TransformerLayer(Module):d_model
 is the token embedding size self_attn
 is the self attention module src_attn
 is the source attention module (when this is used in a decoder) feed_forward
 is the feed forward module dropout_prob
 is the probability of dropping out after self attention and FFN80    def __init__(self, *,
81                 d_model: int,
82                 self_attn: MultiHeadAttention,
83                 src_attn: MultiHeadAttention = None,
84                 feed_forward: FeedForward,
85                 dropout_prob: float):93        super().__init__()
94        self.size = d_model
95        self.self_attn = self_attn
96        self.src_attn = src_attn
97        self.feed_forward = feed_forward
98        self.dropout = nn.Dropout(dropout_prob)
99        self.norm_self_attn = nn.LayerNorm([d_model])
100        if self.src_attn is not None:
101            self.norm_src_attn = nn.LayerNorm([d_model])
102        self.norm_ff = nn.LayerNorm([d_model])Whether to save input to the feed forward layer
104        self.is_save_ff_input = False106    def forward(self, *,
107                x: torch.Tensor,
108                mask: torch.Tensor,
109                src: torch.Tensor = None,
110                src_mask: torch.Tensor = None):Normalize the vectors before doing self attention
112        z = self.norm_self_attn(x)Run through self attention, i.e. keys and values are from self
114        self_attn = self.self_attn(query=z, key=z, value=z, mask=mask)Add the self attention results
116        x = x + self.dropout(self_attn)If a source is provided, get results from attention to source. This is when you have a decoder layer that pays attention to encoder outputs
121        if src is not None:Normalize vectors
123            z = self.norm_src_attn(x)Attention to source. i.e. keys and values are from source
125            attn_src = self.src_attn(query=z, key=src, value=src, mask=src_mask)Add the source attention results
127            x = x + self.dropout(attn_src)Normalize for feed-forward
130        z = self.norm_ff(x)Save the input to the feed forward layer if specified
132        if self.is_save_ff_input:
133            self.ff_input = z.clone()Pass through the feed-forward network
135        ff = self.feed_forward(z)Add the feed-forward results back
137        x = x + self.dropout(ff)
138
139        return x142class Encoder(Module):149    def __init__(self, layer: TransformerLayer, n_layers: int):
150        super().__init__()Make copies of the transformer layer
152        self.layers = clone_module_list(layer, n_layers)Final normalization layer
154        self.norm = nn.LayerNorm([layer.size])156    def forward(self, x: torch.Tensor, mask: torch.Tensor):Run through each transformer layer
158        for layer in self.layers:
159            x = layer(x=x, mask=mask)Finally, normalize the vectors
161        return self.norm(x)164class Decoder(Module):171    def __init__(self, layer: TransformerLayer, n_layers: int):
172        super().__init__()Make copies of the transformer layer
174        self.layers = clone_module_list(layer, n_layers)Final normalization layer
176        self.norm = nn.LayerNorm([layer.size])178    def forward(self, x: torch.Tensor, memory: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):Run through each transformer layer
180        for layer in self.layers:
181            x = layer(x=x, mask=tgt_mask, src=memory, src_mask=src_mask)Finally, normalize the vectors
183        return self.norm(x)This predicts the tokens and gives the lof softmax of those. You don't need this if you are using nn.CrossEntropyLoss
.
186class Generator(Module):196    def __init__(self, n_vocab: int, d_model: int):
197        super().__init__()
198        self.projection = nn.Linear(d_model, n_vocab)200    def forward(self, x):
201        return self.projection(x)204class EncoderDecoder(Module):211    def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: Module, tgt_embed: Module, generator: Module):
212        super().__init__()
213        self.encoder = encoder
214        self.decoder = decoder
215        self.src_embed = src_embed
216        self.tgt_embed = tgt_embed
217        self.generator = generatorThis was important from their code. Initialize parameters with Glorot / fan_avg.
221        for p in self.parameters():
222            if p.dim() > 1:
223                nn.init.xavier_uniform_(p)225    def forward(self, src: torch.Tensor, tgt: torch.Tensor, src_mask: torch.Tensor, tgt_mask: torch.Tensor):Run the source through encoder
227        enc = self.encode(src, src_mask)Run encodings and targets through decoder
229        return self.decode(enc, src_mask, tgt, tgt_mask)231    def encode(self, src: torch.Tensor, src_mask: torch.Tensor):
232        return self.encoder(self.src_embed(src), src_mask)234    def decode(self, memory: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
235        return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)