""" # [labml.ai Annotated PyTorch Paper Implementations](index.html) This is a collection of simple PyTorch implementations of neural networks and related algorithms. [These implementations](https://github.com/lab-ml/nn) are documented with explanations, and the [website](index.html) renders these as side-by-side formatted notes. We believe these would help you understand these algorithms better. We are actively maintaining this repo and adding new implementations. ## Modules #### ✨ [Transformers](transformers/index.html) * [Multi-headed attention](transformers/mha.html) * [Transformer building blocks](transformers/models.html) * [Transformer XL](transformers/xl/index.html) * [Relative multi-headed attention](transformers/xl/relative_mha.html) * [Compressive Transformer](transformers/compressive/index.html) * [GPT Architecture](transformers/gpt/index.html) * [GLU Variants](transformers/glu_variants/simple.html) * [kNN-LM: Generalization through Memorization](transformers/knn/index.html) * [Feedback Transformer](transformers/feedback/index.html) * [Switch Transformer](transformers/switch/index.html) * [Fast Weights Transformer](transformers/fast_weights/index.html) * [FNet](transformers/fnet/index.html) * [Attention Free Transformer](transformers/aft/index.html) * [Masked Language Model](transformers/mlm/index.html) * [MLP-Mixer: An all-MLP Architecture for Vision](transformers/mlp_mixer/index.html) * [Pay Attention to MLPs (gMLP)](transformers/gmlp/index.html) #### ✨ [Recurrent Highway Networks](recurrent_highway_networks/index.html) #### ✨ [LSTM](lstm/index.html) #### ✨ [HyperNetworks - HyperLSTM](hypernetworks/hyper_lstm.html) #### ✨ [Capsule Networks](capsule_networks/index.html) #### ✨ [Generative Adversarial Networks](gan/index.html) * [Original GAN](gan/original/index.html) * [GAN with deep convolutional network](gan/dcgan/index.html) * [Cycle GAN](gan/cycle_gan/index.html) * [Wasserstein GAN](gan/wasserstein/index.html) * [Wasserstein GAN with Gradient Penalty](gan/wasserstein/gradient_penalty/index.html) * [StyleGAN 2](gan/stylegan/index.html) #### ✨ [Sketch RNN](sketch_rnn/index.html) #### ✨ [Counterfactual Regret Minimization (CFR)](cfr/index.html) Solving games with incomplete information such as poker with CFR. * [Kuhn Poker](cfr/kuhn/index.html) #### ✨ [Reinforcement Learning](rl/index.html) * [Proximal Policy Optimization](rl/ppo/index.html) with [Generalized Advantage Estimation](rl/ppo/gae.html) * [Deep Q Networks](rl/dqn/index.html) with with [Dueling Network](rl/dqn/model.html), [Prioritized Replay](rl/dqn/replay_buffer.html) and Double Q Network. #### ✨ [Optimizers](optimizers/index.html) * [Adam](optimizers/adam.html) * [AMSGrad](optimizers/amsgrad.html) * [Adam Optimizer with warmup](optimizers/adam_warmup.html) * [Noam Optimizer](optimizers/noam.html) * [Rectified Adam Optimizer](optimizers/radam.html) * [AdaBelief Optimizer](optimizers/ada_belief.html) #### ✨ [Normalization Layers](https://nn.labml.ai/normalization/index.html) * [Batch Normalization](https://nn.labml.ai/normalization/batch_norm/index.html) * [Layer Normalization](https://nn.labml.ai/normalization/layer_norm/index.html) * [Instance Normalization](https://nn.labml.ai/normalization/instance_norm/index.html) * [Group Normalization](https://nn.labml.ai/normalization/group_norm/index.html) * [Weight Standardization](https://nn.labml.ai/normalization/weight_standardization/index.html) * [Batch-Channel Normalization](https://nn.labml.ai/normalization/batch_channel_norm/index.html) #### ✨ [Distillation](distillation/index.html) ### Installation ```bash pip install labml-nn ``` ### Citing LabML If you use LabML for academic research, please cite the library using the following BibTeX entry. ```bibtex @misc{labml, author = {Varuna Jayasiri, Nipun Wijerathne}, title = {LabML: A library to organize machine learning experiments}, year = {2020}, url = {https://nn.labml.ai/}, } ``` """