This is an annotated PyTorch experiment to train a gMLP model. The paper also applies a Stochastic Depth regularization where some layers are removed randomly during training. We have not implemented that here.
This is based on training loop and configurations for a simple transformer auto-regressive NLP task.
18from labml import experiment
19from labml.configs import option
20from labml_nn.transformers import TransformerConfigs
21from labml_nn.transformers.basic.autoregressive_experiment import Configs as BasicAutoRegressionConfigs
22from labml_nn.transformers.gmlp import GMLPBlock
This inherits from training loop and configurations for a simple transformer auto-regressive NLP task.
25class Configs(BasicAutoRegressionConfigs):
Transformer
34 transformer: TransformerConfigs = 'gMLP'
gMLP Block
36 gmlp: GMLPBlock
d_ffn
for gMLP projection layer
38 d_ffn: int = 2048
41@option(Configs.gmlp, 'gMLP')
42def _gmlp_configs(c: Configs):
46 return GMLPBlock(c.d_model, c.d_ffn, c.seq_len)
49@option(Configs.transformer, 'gMLP')
50def _transformer_configs(c: Configs):
We use our configurable transformer implementation
57 conf = TransformerConfigs()
Set the vocabulary sizes for embeddings and generating logits
59 conf.n_src_vocab = c.n_tokens
60 conf.n_tgt_vocab = c.n_tokens
Set model size
62 conf.d_model = c.d_model
Replace the encoder layer with a gMLP layer
64 conf.encoder_layer = c.gmlp
65
66 return conf
69def main():
Create experiment
71 experiment.create(name="gMLP")
Create configs
73 conf = Configs()
Override configurations
75 experiment.configs(conf, {
Use character level tokenizer
77 'tokenizer': 'character',
Prompt separator is blank
79 'prompt_separator': '',
Starting prompt for sampling
81 'prompt': 'It is ',
Use Tiny Shakespeare dataset
83 'text': 'tiny_shakespeare',
Use a context size of $256$
86 'seq_len': 256,
Train for $128$ epochs
88 'epochs': 128,
Batch size $32$
90 'batch_size': 32,
Switch between training and validation for $10$ times per epoch
93 'inner_iterations': 10,
Model size
96 'd_model': 512,
97 'd_ffn': 2048,
Use Noam optimizer
100 'optimizer.optimizer': 'Noam',
101 'optimizer.learning_rate': 1.,
102 })
Set models for saving and loading
105 experiment.add_pytorch_models({'model': conf.model})
Start the experiment
108 with experiment.start():
Run training
110 conf.run()
114if __name__ == '__main__':
115 main()