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We enhance auto-regressive language models by conditioning on document chunks retrieved from a
large corpus, based on local similarity with preceding tokens. With a 2 trillion token database, our
Retrieval-Enhanced Transformer (RETRO) obtains comparable performance to GPT-3 and Jurassic-1
on the Pile, despite using 25x fewer parameters. After fine-tuning, RETRO performance translates to
downstream knowledge-intensive tasks such as question answering. RETRO combines a frozen BERT
retriever, a differentiable encoder and a chunked cross-attention mechanism to predict tokens based on
an order of magnitude more data than what is typically consumed during training. We typically train
RETRO from scratch, yet can also rapidly RETRofit pre-trained transformers with retrieval and still
achieve good performance. Our work opens up new avenues for improving language models through
explicit memory at unprecedented scale.

1. Introduction

Language modelling (LM) is an unsupervised task that consists of modelling the probability of text,
usually by factorising it into conditional next-token predictions p(xi, ..., x,) = []; p(xi|x<;). Neural
networks have proven to be powerful language models, first in the form of recurrent architectures
(Graves, 2013; Jozefowicz et al., 2016; Mikolov et al., 2010) and more recently in the form of
Transformers (Vaswani et al., 2017), that use attention to contextualise the past. Large performance
improvements have come from increasing the amount of data, training compute, or model parameters.
Transformers have been scaled from 100 million parameter models in seminal work to over hundred
billion parameters (Brown et al., 2020; Radford et al., 2019) in the last two years which has led to
models that do very well on a wide array of tasks in a zero or few-shot formulation. Increasing model
size predictably improves performance on a wide range of downstream tasks (Kaplan et al., 2020).
The benefits of increasing the number of parameters come from two factors: additional computations
at training and inference time, and increased memorization of the training data.

In this work, we endeavor to decouple these, by exploring efficient means of augmenting language
models with a massive-scale memory without significantly increasing computations. Specifically, we
suggest retrieval from a large text database as a complementary path to scaling language models.
Instead of increasing the size of the model and training on more data, we equip models with the
ability to directly access a large database to perform predictions—a semi-parametric approach. At
a high level, our Retrieval Transformer (RETR0O) model splits the input sequence into chunks and
retrieves text similar to the previous chunk to improve the predictions in the current chunk. Existing
retrieval for language modelling work only considers small transformers (100 millions parameters)
and databases of limited size (up to billions of tokens). To our knowledge, our work is the first to
show the benefits of scaling the retrieval database to trillions of tokens for large parametric language
models. Our main contributions are the following.
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Figure 1 | Scaling of RETRO. The performance gain of our retrieval models remains constant with
model scale (left), and is comparable to multiplying the parameteric model size by ~ 10x. The gain
increases with the size of the retrieval database (middle) and the number of retrieved neighbours
(right) on the C4 validation set, when using up to 40 neighbours. Past this, performance begins to
degrade, perhaps due to the reduced quality. At evaluation RETRO can be used without retrieval
data (RETRO[OFF]), bringing limited performance degradation compared to baseline transformers.

* We introduce RETRO, a retrieval-enhanced autoregressive language model (§2.2). We use a
chunked cross-attention module to incorporate the retrieved text (§2.4), with time complexity
linear in the amount of retrieved data. We show that retrieving based on a pre-trained frozen
BERT model (§2.3) works at scale, removing the need for training and updating a retriever
network.

* We show that our method scales well with model size and database size (Fig. 1): RETRO
provides a constant gain for models ranging from 150M to 7B parameters, and RETRO can be
improved at evaluation time by increasing the database size and the number of retrieved neigh-
bours. Our largest model obtains state-of-the-art results on a range of downstream evaluation
datasets including Wikitext103 (Merity et al., 2017) and the Pile (Gao et al., 2020) (§4). We
show that RETRO can be fine-tuned to achieve competitive performance on downstream tasks
such as question answering (§4.3).

* We propose an evaluation aware of proximity of test documents with the training set (§2.6),
addressing the problem of test set leakage (Lee et al., 2021). This is relevant for all language
models, and especially for retrieval-enhanced models since they have direct access to the training
dataset during evaluation. Using this methodology, we show that the performance of RETRO
comes from both explicit neighbour copying and general knowledge extraction (§4.4).

2. Method

We design our retrieval-enhanced architecture to be capable of retrieving from a database with trillions
of tokens. For this purpose, we retrieve at the level of contiguous token chunks instead of individual
tokens which reduces storage and computation requirements by a large linear factor. Our method first
constructs a key-value database, where values store raw chunks of text tokens and keys are frozen
BERT embedddings (Devlin et al., 2019). We use a frozen model to avoid having to periodically
re-compute embeddings over the entire database during training. Each training sequence is then split
into chunks, which are augmented with their k-nearest neighbour retrieved from the database. An
encoder-decoder architecture integrates retrieval chunks into the model’s predictions. We summarize
the RETRO architecture in Fig. 2, and detail it in this section. We end the section by introducing
a new methodology to evaluate language models when an evaluation set is partially present in the
training set.

chunk embeddings is
the mean of token
embeddings in the
chunk
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Figure 2 | RETRO architecture. Left: simplified version where a sequence of length n = 12 is split
into [ = 3 chunks of size m = 4. For each chunk, we retrieve k = 2 neighbours of r = 5 tokens each. The
retrieval pathway is shown on top. Right: Details of the interactions in the Cca operator. Causality is
maintained as neighbours of the first chunk only affect the last token of the first chunk and tokens
from the second chunk.

2.1. Training dataset

We use a multi-lingual version of MassiveText (Rae et al., 2021) for both training and retrieval data.
The dataset consists of text documents from multiple sources and multiple languages totalling over
5 trillion tokens (detailed in Table 1). Sequences are sampled from subsets of the training data,
with sampling weights given in the right-most column of Table 1. We tokenize the dataset using
SentencePiece (Kudo and Richardson, 2018) with a vocabulary of 128,000 tokens. During training
(unless otherwise specified), we retrieve from 600B tokens from the training data. The training
retrieval database is made of the same subsets as the training data, in proportion that matches
the training sampling frequencies. During evaluation the retrieval database consists in the full
union of these datasets, with the exception of books for which we use a sub-sample of 4%. The
evaluation retrieval database thus contains 1.75T tokens. To limit test set leakage, we compute the
13-gram Jaccard similarity between train and test documents using the MinHash scheme and remove
all training documents with high similarity (0.8 or higher) to a validation or test set document.
Additionally, we remove all validation and test articles from Wikitext103 (Merity et al., 2017) from
our Wikipedia training data.

Table 1 | MassiveText. The last column indicates the sampling weight during training. The multilingual
subsets include documents in 10 languages. The full breakdown is given in §A.1.

Source Token count (M) Documents (M) Multilingual Sampling frequency

Web 977,563 1,208 Yes 55%
Books 3,423,740 20 No 25%
News 236,918 398 No 10%

Wikipedia 13,288 23 Yes 5%
GitHub 374,952 143 No 5%
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2.2. Retrieval-enhanced autoregressive token models

Our approach uses retrieval as a way to augment input examples at the granularity of small chunks
of tokens. Formally, we consider sequences of integer tokens in V = [1,v], obtained using a text
tokenizer!. We split each n-token-long example X = (x1, ..., x,) into a sequence of [ chunks (Cy, ..., C))
of sizem = 7,i.e. C1 = (x1,...,Xm), - -+, Cl =(Xn-m+1,--.,%) € V. We use n = 2048 and m = 64.
We ‘augment each chunk C; with a set RET 5 (C;) of k neighbours from the database D. RETy (or
RET for brevity) is a non-trainable operator specified in §2.3. Token likelihoods are provided by a
model, parameterized by 0, that takes as input both previous tokens and their retrieved neighbours.
This defines the following retrieval-enhanced sequence log-likelihood:

m

l
L(X10,D) £ > > o (xu-1) meil () jcw-1) mei> (RET(Cur)rcar) - 1)
u=1 i=1

We set RET(C1) = 0, namely the likelihood of tokens from the first chunk does not depend on
any retrieval data. This likelihood definition preserves autoregressivity: the probability of the i-th
token of the u-th chunk, x(,—1)m+i, only depends on previously seen tokens (x;)1<j<(-1)m+ and on the
data retrieved from the previous chunks (RET(C;))w<.. We can therefore directly sample with log-
probability ¢, where sampling within the chunk C, is conditioned on the neighbours (RET(Cy))y <y-
This makes retrieval-enhanced models directly comparable with the largest language models that are
evaluated by sampling.

2.3. Nearest neighbour retrieval

Retrieval neighbours. Our database consists of a key-value memory. Each value consists of two
contiguous chunks of tokens which we denote [N, F] where N is the neighbour chunk which is used
to compute the key, and F is its continuation in the original document. The corresponding key is
the BERT embedding of N, averaged over time, that we denote BERT(N). For each chunk C, we
retrieve its approximate k-nearest neighbours from our key-value database using the Ly distance
on BERT embeddings d(C,N) = ||[BERT(C) — BERT(N)||§. The model receives the corresponding
values RET(C) 2 ([N1,F!],..., [NX, FX]). Both neighbour chunks and their continuations provide
meaningful improvements, as illustrated in our ablation study (Appendix D). We use a length 64 for
both N’ and F/, thus RET(C) has a shape of k x r with r = 128. To avoid retrieving the chunk C,,1
in the retrieval set RET(C,), which would break causality during training, we filter out neighbours
originating from the same document as the training sequence X.

For a database of T elements, we can query the approximate nearest neighbours in O(logT) time.
We use the SCaNN library (Guo et al., 2020) to achieve this. This means that we can query our
2 trillion token database in 10 ms whilst evaluating or sampling from the model; this expense is
amortized over a chunk length. Performing retrieval on-the-fly is too slow to keep up with the training
calculations—we leverage the frozen aspect of the embedding operator BERT to precompute all
approximate nearest neighbours and save the results as part of the data. In Fig. 9 in the Appendix, we
show results where we only retrieve neighbours within Wikipedia. We find that neighbours tend to
come from 2-3 links away from a given article whereas random articles are more than 5 links apart.

LWe use the notation [1,v] £ {1,...,v} throughout the text.
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Improving language models by retrieving from trillions of tokens

2.4. RETrO model architecture

Our model relies on an encoder-decoder transformer architecture, integrating the retrieved data
through a cross-attention mechanism as introduced in Vaswani et al. (2017). First, the retrieved
tokens RET(C) are fed into an encoder Transformer, which computes the encoded neighbours set E.
Denoting the intermediate activations by H, our transformer decoder then interleaves RETRO-blocks
RETRO(H, E) and standard Transformer blocks LM (H) (the hyperparameter P C [1, L] determines at
which layers we use a RETRO-block). These blocks are built from three different residual operators
with signature R™? — R™d: a fully-connected layer FFw, the standard sequence-level self-attention
layer ATTN, and a chunked cross-attention layer CcA(-, E) that incorporates information from the
retrieval encoder:

RETRO (H,E) £ FFw (Cca (ATTN (H),E)), and LM(H) = FFw(ATTN(H)) (2)

Since Frw, ATTN and Cca are all autoregressive operators whose output at position i only
depends on (hj)j<;, any succession of RETRO and LM layers, followed by a token classification
head defines an autoregressive log-likelihood (1). An overview of the model architecture is given in
Algorithm 1 and in Fig. 2. We next describe the retrieval encoder and the chunked cross-attention
layer in more detail, and explain how to sample from RETRO.

Encoding retrieval neighbours. For each chunk C,, the k retrieval neighbours RET(C,) are fed into
a bi-directional transformer ENCODER, yielding the outputs E), £ ENCODER(RET(C,)/, H,) € R™?,
where j € [1,k] indexes each neighbour. The retrieval encoder is a non-causal transformer. It
is conditioned on H,, the activations of chunk C,, through cross-attention layers; this allows the
representations of the retrieval encoder to be modulated by the retrieving chunk in a differentiable
way. More precisely, the encoding of the j™ neighbour of the u™ chunk, RET(C,)’, depends on the
attended activation Hy, = (h(u—1)m+i) € R™4 of chunk C, at layer min(P). All neighbours for

ie[1,m] ]
all chunks are encoded in parallel, yielding a full encoded set E 2 (E}),c[1],je(1.4] € R4, We
denote E, € RF™4" a5 the encoded neighbours for chunk u € [1,I].

Chunked cross-attention. To perform the Cca operation, we first split a given intermediate acti-

vation H € R™ into [-1 attending chunks (H{[ 2 (hum+i-1)ie[1,m] € Rde) i as depicted on the
ue[l,l-

right of Fig. 2. H; holds the intermediary embeddings of the last token in chunk C, and of the first
m — 1 tokens in C,,1 2. We compute the cross-attention between H and E,—the encoded retrieval
set obtained from chunk C,. Attention is computed across time and across neighbours simultaneously,
as we merge the neighbour and time dimensions of E, before applying cross-attention. Since there
is a notion of alignment between data chunks and retrieval neighbours, we use relative positional
encodings as described in §B.1.2.

We concatenate the [-1 outputs of the per-chunk cross-attentions (each of shape m x d) across
time, and properly pad the result; we thus form the output activation Cca(H, E) € R™4, Formally,
for each chunk C, and for each token i € [1, m] we set

CCA(H: E)um+i—1 £ CA(hum+i—1; Eu)s (3)

2The last token token of chunk Cy, is the first to be able to access the retrieved content E, while maintaining autoregressivity

in (1). Hence, there is a one token overlap between chunk ¢, = (x(u_l)mi)‘ [Lm] and the corresponding attending chunk
i€e[1,m

Cy = (xum+i—1)ie[1,m] :
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Improving language models by retrieving from trillions of tokens

Algorithm 1: Overview of RETRO model architecture.

Hyperparam: P and Pep, indices of layers with cross-attention in the decoder and encoder
respectively

Hyperparam: L and L., number of decoder layers and number of encoder layers.

Input: X € V": sequence of tokens. (RET(Cy)) <.« the retrieved neighbours

Output: 0 € R™VI: the output logits

def ENcopER(RET(Cy)1<u<i, H):
(Hu)yeq1,) < SPLIT(H)
fOl‘j € [l,k],u € [1,1] do // Encoder shared across neighbours and chunks
E{l = EMBenC(RET(Cu)j) // May be shared with the decoder EwmB
for p’ € [1, Lenc] do

EZL — ATTNenC(Egl) // Bi-directional attention

if p’ € P, then

‘ E} < CAenc(Ey, Hu)

Ei]z A FFWenc(E{z)

return E

H «— EMB(X)
for p € [1,L] do
H «— ATTN(H) // Causal attention
if p = min(P) then
// The neighbour ENCODER is conditioned with the decoder activations of
the last layer before the first cross—-attention
E = ENCODER(RET(Cy)1<u<i, H)

if p € P then

| H — Cca(H,E)
H «— FFw(H)
O «— READ(H)

where Ca is the cross-attention residual operator over time-concatenated encoded neighbours. We
recall that this operator is defined in its simplest version by three parameter matrices K € R¥¢,Q ¢
R and V € R4, Forall h € R and Y € R™¢4, we define

Ca(h,Y) £ softmax(YKQTh)YV, 4)

where the softmax is performed on the second dimension and all products are matrix products. We
use multi-head cross-attention, and add positional encodings to the softmax(see §B.1.2).

The first m — 1 tokens cannot attend to any neighbour of a previous chunk; at these positions, we
define Cca as the identity, setting CcA(H, E); = h; for all tokens j € [1,m — 1]. Finally, the last token
him, attends to the last retrieval set E; and we set h;,, 2 CA(him, E;) (not shown in Fig. 2). Listing 1
contains a simplified implementation of Cca. Note that chunked cross-attention is autoregressive:
the output of Cca at position i depends on the sequence from tokens from 0 to i that is input to Cca.

With RETRrRO models, even though each Cca cross-attention attends only to the neighbours of
the preceding chunk RET(C,-1), the dependencies over previous neighbours are propagated via the
self-attention operations. The activations of the i" token in the u chunk therefore potentially depend
upon the set of all previous neighbours RET(Cy ), <y, Without incurring the quadratic cost of cross
attending to that set.



varuna
Highlight

varuna
Highlight

varuna
Highlight

varuna
Highlight


Improving language models by retrieving from trillions of tokens

Sampling. When sampling, at the end of a chunk C,, we use SCaNN to retrieve neighbours RET(C,),
based on the embedding BERT(C,). The encoded neighbours E, = ENCODER(RET(C,)) are then
used to condition the generation of the next chunk C,,1, which we do incrementally: overall the
cost of sampling is thus quadratic in the size of the sampled sequence, as when sampling from
regular Transformers; the added cost of retrieval is linear in the number of chunks [, and is negligible
compared to the token sampling cost in practice.

2.5. Baseline Transformer architecture

We use a transformer (Vaswani et al., 2017) similar to the one described in (Radford et al., 2019),
with some minimal changes: we replace LayerNorm with RMSNorm (Zhang and Sennrich, 2019) and
use relative position encodings (Dai et al., 2019). As baselines, we train retrieval-free transformers
with 132M, 368M, 1.3B and 7.0B parameters (embedding matrices are excluded from parameter
counts). The hyperparameters we used are detailed in Table 2. All retrieval models use the same
size encoder for the retrieval data, with d’ = 896 and 2 layers, which roughly adds 19M parameters.
The encoder uses relative positional encodings. The retrieval models contain one RETRO-block every
3 blocks, starting from layer 6. For our smallest model, Cca is applied in layers 6, 9 and 12 of the
main pathway and also once for query conditioning in the encoder, which adds an additional 12M
parameters. The relative number of extra parameters reduces as we increase the baseline model size.
All models are implemented using JAX (Bradbury et al., 2018) and Haiku (Hennigan et al., 2020).

2.6. Quantifying dataset leakage exploitation

RETRO models may arguably benefit more easily from evaluation dataset leakage, i.e. the fact that
we evaluate on data that were also present in the training set. To better understand how retrieval
improves language modelling performance, we therefore quantify evaluation likelihood as a function
of the overlap between the evaluation and training datasets.

The following approach can be used with any language model, and depends only on the frozen
retriever system presented in §2.3. We split the evaluation sequences (X;); into chunks of length
m < 64, and we see the training data as a set of chunks C. For each evaluation chunk C € C, we
retrieve the 10 closest neighbours (of length up to 128) in the training data. We then compute the
longest token substring common to both the evaluation chunk and its neighbours. This gives a number

€ [0,m]. The value r(C) = -, ranging from 0 (chunk never seen) to 1 (chunk entirely seen), gives a
reliable indication of how much overlap there is between the evaluation chunk and the training data.
For a given model, we then obtain the log-likelihood ¢(C) of each chunk C, and the number of bytes

N(C) it encodes. We then consider the filtered bits-per-bytes of the model:

ZCeCa f(C)

Vael0.1], Cu*{CeCr(C)<a) bpbla) 2 S=res,
CeCy

)

Table 2 | Number of parameters for our baseline and RETR0 models, excluding embeddings, along
with the corresponding hyperparameters.

Baseline parameters RETRO d d¢  # heads Head size # layers
132M 172M (+30%) 896 3,584 16 64 12
368M 425M (+15%) 1,536 6,144 12 128 12
1,309M 1,451M (+11%) 2,048 8,192 16 128 24

6,982M 7,532M (+8%) 4,096 16,384 32 128 32
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which correspond to the bits-per-bytes on the set of chunks that overlap less than a % with the training
chunks. Note that the full evaluation bit-per-bytes performance is recovered by bpb(1). The function
bpb(-) allows us to evaluate the impact of evaluation leakage over predictive performance: for low a,
bpb(a) gives an indication on how the model performs on chunks that are entirely new; the slope of
bpb(-) shows how much the model exploits evaluation leakage.

3. Related Work

We first review existing work on using retrieval for language modelling, and compare RETRO to these
works (see Table 3). As we train RETRO models on a large dataset containing a substantial section
of the internet, our work raises potential privacy, safety, and fairness issues that we then review.

3.1. Retrieval for language modelling

Brants et al. (2007) show that scaling the training data to trillions of tokens improves the machine
translation performance of n-gram models. More recently, GPT-2 (Radford et al., 2019), GPT-3 (Brown
et al., 2020), and Jurassic-1 (Lieber et al., 2021) show that scaling up language models leads to
massive improvements on many downstream tasks. At the same time, Carlini et al. (2021) demonstrate
that large-scale language models can perfectly memorise parts of their training data, suggesting that
enhancing models with retrieval may lead to further improvements. However, significant leakage
between train and test datasets (Lee et al., 2021; Lewis et al., 2021) makes comparing and evaluating
large models trained on large datasets difficult, especially once retrieval capabilities over the training
dataset are added.

Historically, information retrieval for text relies on inverted index matching such as TF-IDF and
BM25 (Robertson and Zaragoza, 2009). Foundational work use latent topic modelling approaches
like LDA (Blei et al., 2003) to identify relevant neighbours (Wei and Croft, 2006). Work in machine
translation such as Zhang et al. (2018) and Gu et al. (2018) retrieve translation pairs based on edit
distance between source sentences and guide the translation output using the closest retrieved target
sentences.

With the success of deep learning, retrieving systems have partly switched to dense learned
representations based on a neural network’s activations. Continuous cache (Grave et al., 2017)
adds probability mass to tokens for which previous activations resemble the current activation
vector, extending the model’s context to the local history. kNN-LM (Khandelwal et al., 2020) applies
this idea to transformers and extends the retrieval database to English Wikipedia, resulting in
substantial improvements on Wikitext103 evaluation. Continuous cache and kNN-LM do not modify

Table 3 | Comparison of RETRO with existing retrieval approaches.

# Retrieval tokens Granularity Retriever training Retrieval integration
Continuous Cache 0 (10%) Token Frozen (LSTM) Add to probs
kKNN-LM (0] (109) Token Frozen (Transformer) Add to probs
SPALM (0] (109) Token Frozen (Transformer) Gated logits
Drr 0 (10?) Prompt Contrastive proxy Extractive QA
REALM 0 (10%) Prompt End-to-End Prepend to prompt
RAG 0 (10%) Prompt Fine-tuned Dpr Cross-attention
F1D 0 (10%) Prompt Frozen DPR Cross-attention
EMDR? o (109 Prompt End-to-End (EM) Cross-attention
RETRO (ours) 0 (10'?%) Chunk Frozen (BERT) Chunked cross-attention
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the underlying neural-network models, but interpolate at inference between the language model’s
output and distributions computed from retrieved tokens. These methods can therefore be plugged
into any model without additional training, although this limits the model’s ability to reason about
the retrieved text. SPALM (Yogatama et al., 2021) addresses this limitation by adding an extra gating
network to post-process the retrieved data; yet most of the network is unaffected by the retrieval
during inference.

The retrieval representations may be trained directly instead of relying on a pre-trained model—
retriever systems have been developed for this purpose, primarily on open-domain question answering.
For example, DpR (Karpukhin et al., 2020) trains two BERT models (for queries and keys respectively)
using a contrastive loss to align the representations of a question and of its answers. Lee et al. (2019)
use an inverse cloze task to find semantic representations of passages for retrieval. These works differs
from continuous cache and kNN-LM in that they embeds passages (or chunks) of text together, as
opposed to each token individually. The retriever network is trained in isolation of the downstream
task that uses the retrieval data. This potential issue is specifically addressed by REaLM (Guu et al.,
2020), which trains the retrieval system end-to-end to maximize the final training cross-entropy. This
comes with the extra complexity of searching the database during training and periodically updating
the embedding table, severely limiting the scale at which it can operate. RAG (Lewis et al., 2020)
and F1D (Izacard and Grave, 2021) build upon DPR to set the state of the art on question answering
benchmarks by training encoder-decoder transformer models. More recently, EMpR? (Sachan et al.,
2021) extends F1D by using an expectation-maximization algorithm to train the retriever end-to-end
and achieves state of the art results compared to similarly sized models.

In the open-domain dialogue setting, BlenderBot 2.0 (Komeili et al., 2021) learns to issue textual
internet queries, outperforming dense retrieval methods when evaluated on a task measuring how
close model responses are to those of humans. This involves collecting a dataset of human dialogues
with associated search queries, which limits the scalability of this approach. Although effective on
question answering and other tasks with strong conditioning, none of these methods are designed to
model arbitrary text sequences, in contrast with RETRoO.

RETRO shares components with kKNN-LM and DPr in that it uses frozen retrieval representations.
RETRO models longer sequences than QA examples; this requires to reason at a sub-sequence level,
and to retrieve different documents for the different chunks of a sequence. Similar to F1D, RETRO
processes the retrieved neighbours separately in the encoder, and assemble them in the chunked
cross-attention. This differs from e.g. REALM, that prepends retrieved documents to the prompt.
Using chunks allows for repeated retrieval whilst generating a sequence as opposed to retrieving
only once based on the prompt alone. Furthermore, retrieval is done during the whole pre-training
process in RETRO, and is not simply plugged-in to solve a certain downstream task. Finally, previous
methods based on dense query vectors use small models and retrieval datasets with less than 3B
tokens (English Wikipedia). Table 3 summarizes the difference of RETRO with existing approaches.

3.2. Privacy, safety and fairness

Bender et al. (2021); Weidinger et al. (2021) highlight several dangers of large language models.
Those stem from their ability to memorise training data, their high training cost, the static nature
of their training data (Lazaridou et al., 2021), their tendency of amplifying inherent biases in the
training data, and their ability to generate toxic language (Gehman et al., 2020). In this section we
inspect these dangers, focusing on how retrieval augmented language models may exacerbate or
mitigate them.

Large language models can perfectly memorise parts of their training data (Carlini et al., 2021).
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When coupled with large training datasets gathered from the web or other sources, this has clear
privacy and safety implications. Retrieval models such as RETRO that have access to the entire training
dataset during inference exacerbate these privacy issues by being able to directly copy training data.
However, retrieval systems offer a path towards mitigating these concerns via obliteration of the
retrievable data at inference time. In addition, differential privacy training (Abadi et al., 2016) of
retrieval models could guarantee that no private information is stored in the model weights, while
individualisation on private data could be made by updating the retrieval database at inference time.

Due to their high training cost, re-training large language model regularly to incorporate new
data, languages, and norms is prohibitively expensive. To keep retrieval models up-to-date, it may be
sufficient to update the retrieval database, which is orders of magnitude cheaper than re-training
a model from scratch. In addition to the benefits of updating models in terms of fairness and bias,
simply training large language models has a significant energy cost (Schwartz et al., 2020; Strubell
et al., 2019). Retrieval mechanisms offer a path to reducing the compute requirements needed to
train and update language models that reach a certain performance.

Large language models are prone to generating toxic outputs, as shown in Gehman et al. (2020).
Bender et al. (2021); Jo and Gebru (2020) advocate for the importance of better training data curation
and documentation. Additionally, if portions of the training data are found to be eliciting biased or
toxic outputs after training, retrieval allows for some correction, as the offending retrieval data can
be retroactively filtered. However, it is also the case that without careful analysis and intervention,
retrieval models may exacerbate biases that are present in the training data. Retrieval models can
also add a further source of bias through the selection mechanism for retrieval documents. Further
work in this area is required to better understand how retrieval affects the bias and toxicity of the
model outputs.

Finally, samples from large models are difficult to interpret, making mitigating these issues all the
more challenging (Belinkov et al., 2020; Jain and Wallace, 2019). Retrieval provides more insights in
to the outputs of a model, as one can directly visualise or modify the neighbours that are being used.
The examples in Table 6, 7, 20 and 21 illustrate how retrieval makes language models more factual
and interpretable by providing more transparent outputs.

4. Results

We first report results on language modelling benchmarks. Second, we show how to RETRoOfit
pre-trained Transformer language models into retrieval models with few additional FLOPs. Next,
we report RETRO results on question answering. Finally, we report evaluation metrics with leakage
filtering, to better understand the source of the gains with retrieval.

4.1. Language modelling

Datasets. We evaluate our models on C4 (Raffel et al., 2020), Wikitext103 (Merity et al., 2017),
Curation Corpus (Curation, 2020), Lambada (Paperno et al., 2016) and the Pile (Gao et al., 2020).
We also evaluate on a set of manually selected Wikipedia articles that were added or heavily edited in
September 2021, months after our pre-training and retrieval dataset was collected (details are given
in 8A.2). We construct the dataset with articles from the “future” and manually remove new articles
that strongly overlap documents in our training data. This guarantees that the evaluation documents
are not leaked in our training data.

For C4, Wikitext103, the Pile, and our Wikipedia dataset we evaluate the language modelling
performance on entire documents and measure the bits-per-byte (bpb). We favour bits-per-byte over
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Figure 3 | Scaling with respect to model size. (a) LAMBADA top-1 accuracy. (b) Evaluation loss on
curation corpus. (c) Perplexity on Wikitext103 valid. (d) Bits-per-byte on selected Wikipedia articles
from September 2021.

loss as it is tokenizer agnostic. We evaluate with a sequence length of 2048 tokens but use a stride of
1024 within documents to mitigate boundary effects. On Curation Corpus we concatenate the article,
the “TL; DR:” string, and the summary, but only evaluate the bpb on the summary. For Lambada we
evaluate the accuracy on the last word, using greedy generation.

Model scaling. In Fig. 1(left) and Fig. 3 we show the language modelling performance as we scale
models from from 150 million to 7 billion (non-embedding) parameters. We see that on all datasets,
RETRO outperforms the baseline at all model sizes. Furthermore, we observe that improvements do
not diminish as we scale the models. The performance is dataset dependent, with the largest gains on
Wikitext103 and C4. Wikipedia articles and other web pages are similar to Wikitext103 documents,
even if not exact copies (§4.4), we thus obtain dramatic improvements on Wikitext103 as our retrieval
model is able to directly exploit these overlaps. The smallest gains are for Curation Corpus, where
RETRO only slightly outperforms the baseline. This is expected as Curation Corpus summaries are
designed to only contain information from the source article and are not included in our retrieval
database. On our “future” Wikipedia September 2021 dataset, we also observe consistent gains for
all model sizes.

Data scaling. Fig. 1 (middle) shows how scaling the retrieval database at evaluation improves the
language modelling performance. We observe dramatic gains as the retrieval data is increased from
Wikipedia (4 billion tokens) to all of Massive text (1.7T tokens). Fig. 1(right) shows how performance
scales as we increase the number of retrieved chunks. Despite being only trained with 2 neighbours,
we see consistent improvements for all models when the number of neighbours is increased from 1 to
10. Furthermore, we observe that larger models are able to better utilise more neighbours: the 172M
model improves with up to 10 neighbours, whereas the 7B model improves with up to 40 neighbours.

The Pile. We evaluate our 7B models on the Pile test sets® and compare against the 178B parameter
Jurrasic-1 (Lieber et al., 2021) model and the 280B parameter Gopher (Rae et al., 2021) model. We
do not compare against GPT-3 as it is outperformed by Jurassic-1 and Gopher on almost all subsets.
Fig. 4 shows the relative improvements in bits-per-byte over our 7B transformer baseline for our
7.5B RETRO model, Jurassic-1 and Gopher. Jurassic-1 outperforms the baseline on all datasets
except for books, likely due to the inclusion of books in our training data. Gopher and RETRO

3Due to legal and ethical concerns relating to their use, we exclude the Enron Emails and the Youtube Subtitles datasets.
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Figure 4 | The Pile: Comparison of our 7B baseline against Jurassic-1, Gopher, and RETrRO. We
observe that the retrieval model outperforms the baseline on all test sets and outperforms Jurassic-1
on a majority of them, despite being over an order of magnitude smaller.

outperform the baseline on all test sets. Overall, RETRO 7.5B outperforms Jurassic-1 and Gopher on
a majority of the test sets. On the dm_mathematics and ubuntu_irc subsets, our RETRO model
does not outperform our 7B baseline and underperforms Jurassic-1. We hypothesis that the retrieved
neighbours on these datasets are not helpful, due to a combination of what is in our retrieval dataset
and the efficacy of the nearest-neighbour search.

Wikitext103. To validate our approach in a controlled setting, we compare our method with kNN-LM
(Khandelwal et al., 2020) on the Wikitext103 dataset in Table 4. We train a baseline transformer
on the training set of Wikitext103. This transformer has 24 layers, 1024 hidden units, 16 heads
and a key size of 64, as in Baevski and Auli (2019). Our baseline does not have adaptive input, and
our tokenizer has an open vocabulary, unlike Baevski and Auli (2019), which makes our baseline
perplexities a bit higher. The full experiment details and hyperparameters are given in §C.2 and
Table 11.

Table 4 | Perplexities on Wikitext103. When using the Wikpedia dataset for retrieval, RETRO
performs similarly to our implementation of kNN-LM. As we scale the retrieval dataset, RETRO
performs much better. The perplexities for retrieving from full MassiveText are quite low, which is
partly due to partial overlap with Wikitext103 not caught by our deduplication.

Model Retrieval Set #Database tokens #Database keys ~ Valid Test
Adaptive Inputs (Baevski and Auli, 2019) - - - 1796 18.65
SpaLM (Yogatama et al., 2021) Wikipedia 3B 3B 17.20 17.60
kNN-LM (Khandelwal et al., 2020) Wikipedia 3B 3B 16.06 16.12
Megatron (Shoeybi et al., 2019) - - - - 10.81
Baseline transformer (ours) - - - 21.53 2296
kNN-LM (ours) Wikipedia 4B 4B 18.52 19.54
RETRO Wikipedia 4B 0.06B 18.46 18.97
RETRO C4 174B 2.9B 12.87 10.23
RETRO MassiveText (1%) 18B 0.8B 18.92 20.33
RETRO MassiveText (10%) 179B 4B 13.54 14.95
RETRO MassiveText (100%) 1792B 28B 3.21 3.92
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We re-implement kNN-LM with our tokenizer and baseline transformer to produce embeddings of
size 1024 for every token in Wikitext103. kNN-LM has probabilities pinnimv = Apinn + (1 — ) pru
with pinn (k) o« exp (—ady). We tune A = 0.118 and a = 0.00785 on the validation set (Fig. 7) and
report performance for these hyperparameters on both the validation and test set.

We fine-tune our baseline transformer into a RETRO model (Fig. 7), using the Wikitext103
training data and retrieving from Wikipedia with 2 neighbours. We only train the new weights, as
explained in §4.2, and share the embedding weights between the encoder and the main pathway.
This is necessary for Wikitext103 which is quite small, as training RETRO from scratch in this setting
leads to over-fitting.

We evaluate the fine-tuned RETRO model with different retrieval sets. We use 10 neighbours at
evaluation for both RETRO and kNN-LM. When retrieving from Wikipedia, we obtain results com-
parable to our kNN-LM implementation. Furthermore, scaling the retrieval database to MassiveText
yields dramatic improvements, though this is partly due to leakage (see §4.4). For reproducibility,
we also include results when retrieving from C4, which are close to previous state-of-the-art and
comparable to using 10 % of MassiveText.

It is worth noting that kNN-LM requires 1024 floats for every token in the retrieval dataset,
totalling 15 terabytes (Tb) for the 4 billion tokens in Wikipedia. kNN-LM and other token-level
retrieval approaches therefore don’t scale to retrieval databases with trillions of tokens such as
MassiveText. In comparison, RETRO only requires 215Gb to index our Wikipedia dataset, and 93Tb
for MassiveText. Inspecting the number of retrieval database entries in Table 4 makes it clear why
retrieving at the chunk level is necessary when scaling to datasets with trillions of tokens.

4.2. RETRO-fitting baseline models

We extend baseline models into RETRO models by freezing the pre-trained weights and training
only chunked cross-attention and neighbour encoder parameters (less than 10% of weights for the
7B model) in Fig. 5. This offers an efficient alternative path to enhance transformers with retrieval,
requiring only 6 million sequences (3% of the pre-training sequences that we used). Additionally,
by only training the new weights we ensure that when evaluated without retrieval, the original
model performance is exactly maintained. RE TRrofitting models quickly surpasses the performance of
baseline models and even achieves performance close to that of RETRO models trained from scratch.
The experiment hyperparameters are given in §C.3.

4.3. Question answering

We fine-tune our retrieval models on the Natural Questions (Kwiatkowski et al., 2019) dataset
to demonstrate that our retrieval pathway can be used to inject information from arbitrary data
sources. We use the version* provided by Izacard and Grave (2021) which is augmented with the
retrieved passages from Dpr (Karpukhin et al., 2020). We fine-tune all the weights of our 7.5B
pre-trained RETRO model for 25,000 steps using the top 20 retrieved passages. We format the
data as “question: {question} \nanswer: {answer}” and left pad the data such that
“answer:” coincides with the end of the first chunk of 64 tokens and thus aligns with the first
retrieving chunk. The model has access to the question via the previous tokens in the sequence as well
as the top 20 DPR Wikipedia passages and their titles via the chunked cross-attention mechanism.
The exact match scores are shown in Table 5 and the full fine-tuning details are given in §C.4. Our
method is competitive with previous approaches such as REALM, RAG and DPR, but underperforms

41’1ttps ://github.com/facebookresearch/FiD
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Figure 5 | RETRO-fitting a baseline transformer. Any transformer can be fine-tuned into a retrieval-
enhanced transformer by randomly initializing and training only the chunked cross-attention and
retrieval encoder weights. Fine-tuning in this way quickly recovers and surpasses the non-retrieval
performance, and almost achieves the same performance as training a retrieval model from scratch
(shown by the arrow on the right hand side of each plot). We find good performance RETRO-fitting
our models training on only 3% the number of tokens seen during pre-training.

the more recent F1D. In contrast with this work, we find that increasing the number of neighbours
past 20 does not improve RETRO performance on this task. We hypothesize that the encoder-decoder
structure of T5—the base model in F1ID— and the T5 pre-training objective leads to a model that
relies more on the encoder output than RETRO, which is important in the QA setting. To compete
with T5-finetuned models, future work should consider ways of forcing RETRO to rely further on the
retrieval encoder output when producing tokens.

4.4. Relating retrieval performance to dataset leakage.

We report the filtered eval losses as detailed in §2.6 on C4, Curation Corpus and Wikitext103 in Fig. 6.
On C4 and Wikitext103, for which there is leakage into the training set, the slope is negative for both
baseline models and RETrRO models. RETRO models exploit leakage more strongly than baseline
models, as indicated by the more negative slope. This is due to its explicit ability to copy-paste existing
training chunks to predict leaked evaluation chunks (see a qualitative example of this model behavior
on a Wikitext103 article in Table 19). On Curation Corpus, retrieval provides a constant offset, which
is expected as there is by design no leakage between Curation Corpus and the training dataset.

Table 5 | Question answering results. Exact match accuracy on Natural Questions.

Model Test Accuracy
REALM (Guu et al., 2020) 40.4
Dpr (Karpukhin et al., 2020) 41.5
RAG (Lewis et al., 2020) 44.5
EMDR? (Sachan et al., 2021) 52.5
F1D (Izacard and Grave, 2021) 51.4
F1D + Distill. (Izacard et al., 2020) 54.7
Baseline 7B (closed book) 30.4
RETRO 7.5B (DPR retrieval) 45.5
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Figure 6 | Performance vs. longest common retrieval substring. Evaluation loss as a function of
allowed longest common substring between evaluation data chunks and their nearest neighbours.
Retrieval still helps when considering chunks with no more than 8 contiguous tokens overlapping
with training dataset chunks.

On the other hand, RETRO outperforms baseline models at all leakage levels, down to a = 12.5%.
At this level, the loss is computed on chunks with less than 8 contiguous tokens shared with the
closest matching chunk in the training dataset—this is a reasonable level of overlap at which we
consider that there is no local leakage. Retrieval thus improves predictions on both chunks that are
syntactically similar to chunks in the training set, and on chunks that are syntactically different from
all training chunks. This points toward a non trivial RETRO capacity of generalizing based on both
model parameters and retrieval database. Similar results are found on the Pile dataset (see Fig. 12,
8F.3).

4.5. Using RETRO for sampling

We show examples of samples obtained using the 7.5B RETRO model in Table 6, Table 7 and
Appendix E. For each chunk (the first one being the prompt), we juxtapose sampled chunks C, with
retrieved neighbours RET(C,). To give an indication of local overlap, we colour each sampled token
in chunk C, based on the length of the longest common prefix (LCP) found in the retrieved chunks
RET(C,-1). Similarly, we colour the retrieved chunks based on the LCP in the sampled chunk. For the
sample in Table 6, for which we chose the prompt, we observe that the retrieved chunks influence the
sample as there are overlaps between the sampled tokens and neighbour tokens. Overall, retrieval
reduces hallucinations (in line with the findings of Shuster et al. (2021)) and makes the model more
knowledgeable, when comparing with samples produced with retrieval disabled. In the sample in
Table 7, the model recognises that the prompt is the beginning of the first scene of Hamlet and
leverages retrieval data to continue it with only a few mistakes. We provide further examples in
Appendix E, including examples from the evaluation sets, as well as the detailed procedure used for
colouring the tables.

5. Conclusion

We present Retrieval-Enhanced Transformers (RETRO0), a method for modelling arbitrary text se-
quences whilst retrieving from databases with trillions of tokens—scaling the data available to models
by an order of magnitude compared to what is typically consumed during training. RETRO models
gains do not diminish for models with up to at least 7B parameters, and correspond to non-retrieval
models with 10x more parameters on certain datasets. On Wikitext103 and the Pile, RETRO outper-
forms previous models trained on large scale datasets. We also show that RETRO is competitive on
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retrieval-intensive downstream tasks such as question answering.

RETRO models are flexible and can be used without retrieval at evaluation and still achieve
comparable performance to baseline models. Conversely, baseline models can be rapidly fine-tuned
into RETRO models to obtain nearly the same performance as if trained from scratch. Careful analysis
shows that only a modest fraction of the gains obtained by RETRO are due to test set leakage. In
general, we caution for such leakage in large-scale language datasets and suggest further work in
better understanding the role of test set leakage in the performance of large-scale language models.

Overall, our work demonstrates at an unprecedented scale that semi-parametric approaches can
provide an orthogonal, more efficient approach than raw parameter scaling as we seek to build more
powerful language models.
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Table 6 | Sample - Beavers are interesting animals. The RETRO [OFF] sample quickly diverges to other
animals while the RETRO[ON] sample tends to stay focused on the beaver topic due to neighbour conditioning.

Prompt and sample of RETRO[OFF] Prompt and sample of RETRO[ON] [N}, FL] colored by LGP with 11 [N2, F2] colored by LCP with Cy,1
colored by LCP with RET(Cy—1)
LCP=0,1,2,34>5 LCP=0,1,2,34>5 LCP=0,1,2,34,>5

Beavers are interesting animals that Beavers are interesting animals that ave

live near rivers. They build live near rivers. They build

dams to create ponds. Frogs are am
phibians, so they can live in both 1

and and water. They have great camou
flage to hide from predators. The G
olden Retriever, or Golden, is a ver

y big dog. They are very strong, and
have a thick coat to help them live

in

cold areas. A kangaroo is an anima aw a
1 that is very large. It can jump ve use thei
ry high. They can run very fast. A
meerkat is a small animal that lives

in Africa. They live in colonies of

up to a hundred of them. They can ¢
limb trees very easily.

A mouse is a small mammal that lives
on land. It is a very good climber
and it can run very fast. Penguins

are birds that live on Antarctica. T
hey have a thick coat to keep them w
arm. Rabbits are small animals that
live in the ground. They
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Table 7 | Sample - Hamlet, Act 1, Scene 1. The RETRO[OFF] sample has correct syntax but is hallucinated,

and ends with repetition of one character (FRANCISCO Approach me not). The RETR0O[ON] sample is the
correct continuation of the original text, and is robust to formatting differences between our prompt and the

retrieved data.

Prompt and sample of RETRO[OFF]

Prompt and sample of RETRO[ON]
colored by LCP with RET(C;—1)
LCP=0,1,2,34,>5

[Nl} s F&J colored by LCP with C,,1

LCP=0,1,2,34>5

[NL%, Fg] colored by LCP with C,41

LCP=0,1,2,34>5

ACT I SCENE 1. Elsinore. A pla

tform before the castle. FRANC

ISCO at his post. Enter to him
BERNARDO BERNARDO Who’s there
? FRANCISCO Nay, answer me: st
and, and unfold yourself. BERN
ARDO

ACT I SCENE 1. Elsinore. A pla

tform before the castle. FRANC

ISCO at his post. Enter to him
BERNARDO BERNARDO Who'’s there
? FRANCISCO Nay, answer me: st
and, and unfold yourself. BERN
ARDO

ACT I SCENE 1. Elsinore. A pla
tform before the castle. (FRAN
CISCO at his post. Enter to hi

m BERNARDO) BERNARDO Who's the
re? FRANCISCO Nay, answer me:
stand, and unfold yourself. BE
RNARDO Long live the king! FRA
NCISCO Bernardo? BERNARDO He.
FRANCISCO You come most carefu
1ly upon your hour. BERNARDO ’
Tis now struck twelve; get the

e to bed, Francisco. FRANCISCO
For this relief much thanks:

’tis bitter cold, And I am sic

k at heart. BERNARDO Have you

><TEXT>ACT I SCENE L. Elsin
ore. A platform before the cas

tle. FRANCISCO at his post. E

nter to him BERNARDO BERNARDO
Who's there? FRANCISCO Nay, an
swer me: stand, and unfold you
rself. BERNARDO Long live the
king! FRANCISCO Bernardo? BERN
ARDO He. FRANCISCO You come mo
st carefully upon your hour. B
ERNARDO ’Tis now struck twelve

; get thee to bed, Francisco.
FRANCISCO For this relief much
thanks: ’tis bitter cold, And

I am sick at heart.

Who calls ? FRANCISCO I am th

e lord here; 1, Francisco, tha

t am sick of grief. [ Aside. B
ERNARDO The king ! FRANCISCO I
am sick of that also. BERNARD

O My lord ? FRANCISCO Do not a
pproach me. BERNARDO

Long live the king! FRANCISCO
Bernardo? BERNARDO He. FRANCI
SCO You come most carefully up

on your hour. BERNARDO ’Tis no

w struck twelve; get thee to b

ed, Francisco. FRANCISCO For t

his relief much thanks: ’tis b

itter cold, And I am sick at h

eart. B

Long live the king! FRANCISCO
Bernardo? BERNARDO He. FRANCI

SCO You come most carefully up

on your hour. BERNARDO 'Tis no

w struck twelve; get thee to b

ed, Francisco. FRANCISCO For t

his relief much thanks: 'tis b

itter cold, And I am sick at h

eart.</TEXT></DOC><DOC><DO

CNO>romeo</DOCNO><TEXT>ACT I
PROLOGUE Two households, bo

th alike in dignity, In fair V

erona, where we lay our scene,

From ancient grudge break to

new mutiny,

live the king! FRANCISCO Bern
ardo? BERNARDO He. FRANCISCO Y
ou come most carefully upon yo
ur hour. BERNARDO ’Tis now str
uck twelve: get thee to bed, F
rancisco. FRANCISCO For this r
elief much thanks: ’tis bitter

cold, And I am sick at heart.
BERNARDO Have you had quiet g
uard? FRANCISCO Not a mouse st
irring. BERNARDO Well, good ni
ght. Ifyou do meet Horatio and
Marcellus, The rivals2 of my
watch, bid them make haste. FR
ANCISCO I think I hear them.—
Stand, ho! who is there?/EN

Francisco, I would speak with

you. FRANCISCO Approach me not
, but speak. BERNARDO Your han
d, your voice FRANCISCO I will
not hear thee speak. BERNARDO
Francisco, your hand, I entre

at thee. FRANCISCO Approach me
not. BERNARDO Francisco FRANC

ERNARDO Have you had quiet gua
rd? FRANCISCO Not a mouse stir
ring. BERNARDO Well, good nigh
t. If you do meet Horatio and
Marcellus, The rivals/of my wa

tch, bid them make haste. FRAN
CISCO I think I hear them. Sta

nd, ho! who is there?/Enter

had quiet guard? FRANCISCO No
t a mouse stirring. BERNARDO W
ell, good night. If you do mee

t Horatio and Marcellus, The r
ivals of my watch, bid them ma

ke haste. FRANCISCO I think I
hear them. Stand, ho! Who's th
ere? (Enter HORATIO and MARCEL
LUS) HORATIO Friends to this g
round. MARCELLUS And liegemen
to the Dane. FRANCISCO Give yo
u good night. MARCELLUS O, far
ewell, honest soldier: Who hat

h relieved you? FRANCISCO Bern
ardo has my place. Give you go

od night.| (Exit

ARDO Have you had quiet guard?
FRANCISCO Not a mouse stirrin
g. BERNARDO Well, good night.
Ifyou do meet Horatio and Marc
ellus, The rivals2 of my watch

, bid them make haste. FRANCIS
CO I think I hear them.— Stand

, ho! who is there? ENTER HORA
TIO AND MARCELLUS. HORATIO Fri
ends to this ground. MARCELLUS
And liegemen to the Dane.3 FR
ANCISCO Give you good night. M
ARCELLUS O, farewell, honest s
oldier: Who hath relieved you?
FRANCISCO Bernardo hath my pl
ace. Give you good night

ISCO Approach me not. BERNARDO
1 have a letter FRANCISCO App
roach me not. BERNARDO For the
king. FRANCISCO Approach me n
ot. BERNARDO There’s no treaso

n in’t. FRANCISCO Approach me
not. BERNARDO I will

HORATIO and MARCELLUS/HORATIO
Friends to this ground. MARCE

LLUS And liegemen to the Dane.
FRANCISCO Give you good night

. MARCELLUS O, farewell, hones

t soldier: Who hath relieved y

ou? FRANCISCO Bernardo hath my
place. Give you good night.
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A. Datasets

We provide a full description of MassiveText and of our extract of recent Wikipedia articles.

A.1. Full description of MassiveText

The full break down of MassiveText by source and languages is given in Table 8. For a full description
and analysis of MassiveText, see Rae et al. (2021).

Source Language Token count (M) Documents Sampling weight
En 483,002 604,938,816 0.314

Ru 103,954 93,004,882 0.033

Es 95,762 126,893,286 0.033

Zh 95,152 121,813,451 0.033

Web Fr 59,450 76,612,205 0.033
De 57,546 77,242,640 0.033

Pt 44,561 62,524,362 0.033

It 35,255 42,565,093 0.033

Sw 2,246 1,971,234 0.0044

Ur 631 455,429 0.0011

Books En 3,423,740 20,472,632 0.25
News En 236,918 397,852,713 0.1
En 3,977 6,267,214 0.0285

De 2,155 3,307,818 0.003

Fr 1,783 2,310,040 0.003

Ru 1,411 2,767,039 0.003

S Es 1,270 2,885,013 0.003
Wikipedia It 1,071 2,014,291 0.003
Zh 927 1,654,772 0.003

Pt 614 1,423,335 0.003

Ur 61 344,811 0.0001

Sw 15 58,090 0.0004

Github ; 374,952 142,881,832 0.05
Total - 5,026,463 1,792,260,998 1

Table 8 | MassiveText dataset. The final column indicates the sampling weight for each dataset
during training. For the retrieval database, the entire dataset is used, with the exception of books for
which we use a sub-sample of 4%.

A.2. Wikipedia September 2021

We create an evaluation dataset consisting of 23 Wikipedia articles that were added or heavily edited
in September 2021, after we collected our training dataset. In addition, we filter out articles that rely
too heavily on templated content, using the method detailed in §2.6 to identify articles with chunks
that have a high overlap with their neighbours. Fig. 10 show that little overlap remains between our
test dataset and the retrieved neighbours from the training dataset. The full list of included articles is
given in Table 9.
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Table 9 | Full set of articles included in our Wikipedia Sept. 2021 evaluation dataset.

Megan Rohrer Aakashavaani

Emma Raducanu Junior Eurovision Song Contest 2021

Ambra Sabatini Pavilion Bukit Jalil

WhyDonate Blake Desjarlais

The Juggernaut (company) 2021 All-Ireland Senior Football Championship Final
Angela Diaz Drift-barrier hypothesis

2020 Summer Paralympics Venomics

2021 Afghan protests Great Circle (novel)

Rexh Xhakli Hurricane Ida

Julia Laskin 2021 Montenegrin episcopal enthronement protests
Cuijk At War With the Silverfish

Ghoubet Wind Power Station

We first parse articles using mwparserfromhell®. We then remove sections with the following
titles: “references”, “external links”, “sources”, “further reading”, “see also”, “citations”, and “note”. In
the remaining sections, we remove Wikilinks and remove the following templates: “reflist”, “notelist”,
“notelist-ua”, “notelist-1r”, “notelist-ur”, and “notelist-1g”. We also exclude objects with the “ref” or
“table” tag and clean the remaining text with the st rip_code function. Finally, we concatenate the

title and all the sections and use \n\n to delimitate them.

B. Details on the retrieval architecture

We give details on the RETRO architecture, and on the fine-tuning procedure we use for RETRofitting
existing language models.

B.1. RETRO architecture and implementation
B.1.1. Feed-forward architecture

As mentioned in the main text, the overall encoder-decoder architecture is fully feed-forward. We start
with a sequence X € V" = (Cy);<,<;, and its pre-computed neighbours (RET(C,));<,<; and returns
logits in R™IVI. Along with ATTN, FFw, Cca and Ca operators introduced in the main text, we
define the decoder embedding layer EMB : V* — R™4  the SPLIT operator that extracts chunked
intermediary embeddings SPLIT(H) 2 (H,)q<,< € R*™? and the read-out layer READ : R™¢ —
R™IVI, We then describe the forward pass in Algorithm 1. In addition to the usual Transformer ones,
RETRO architecture hyperparameters involves the layer indices Peye and P, at which the encoder and
the decoder perform cross-attention.

B.1.2. Relative positional encoding in the chunked cross-attention layer

The Ca operator uses relative positional logits, that are computed from a specific relative distance
separating data tokens from retrieval tokens. Indeed, we expect any retrieval neighbour RET(C,)’ and
the chunk C, to be relatively well aligned, and assume that they start at the same position. Therefore,
when computing CA(H;, E,), we set the distance between the data token i € [1,1] of chunk C;} and

5https ://github.com/earwig/mwparserfromhell
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the retrieval token i’ € [1, 21] of RET(C,)’ to be
d(i,i"y =i-i"+1-1. (6)

When computing the encoder cross-attentions CA(RET(C,)’, H,), we set the distance between the
retrieval token i’ € [1, 2[] and the data token i € [1,1] to be

denc(i’, i) £ i’ —1i. 7

Positional logits are obtained as a linear transform of a cosine vector computed from (d(i,i’)); 7, and
are added to content logits, as in a regular self-attention block.

B.1.3. Chunked cross-attention implementation

Our implementation of the Cca operator, shown in Listing 1, is based on a vectorized application of
a cross-attention layer. For simplicity, we omit the multi-head attention logic and use the simplest
Q,K,V attention. We omit relative positional logits computation, described above.

B.1.4. Optional sharing of embedding matrices

We use disjoint embeddings for the encoder and decoder by default, which allows us to use a different
dimensionality for the encoder (typically kept at dgnc = 896) and for the decoder (that we scale up
to d = 8192). It is possible to share the embeddings, with little difference in training, as we show in
the ablation section.

B.2. Baseline to RETrRO model fine-tuning

As shown in Fig. 5, we found that we were able to take a pre-trained baseline transformer and add
RETRO through fine-tuning. In all cases, we froze all weights from pre-training and freshly initialised
the retrieval encoder and cross-attention weights. In all cases, the cross-attention is added every third
layer starting at layer six. The learning rate for the three smaller models was set to 2 x 10~* and
half that for the larger model. We experimented with allowing the entire model to resume training
during fine-tuning but consistently found that the best approach was to freeze the pre-trained model.
This kept the retrieval-off performance frozen whereas when all weights were tuned the retrieval off
performance would degrade.

C. Training details and hyperparameters

We provide the hyperparameters used in the various experiments of §4.

C.1. Language model pre-training

In Table 10, we show the hyperparameters of the different models we train. In all cases, we train for
419,430,400,000 training tokens. The three smaller models are trained with a batch size of 256 and
the largest model is trained with a batch size of 1024. The minimum learning rate is set to 0.1 times
the maximum learning rate, which is shown in Table 10. The learning rate is decayed using a cosine
cycle length that matches the total number of training tokens. All models are trained using Adamw
(Loshchilov and Hutter, 2019) with a weight decay parameter of 0.1. The learning rate linearly
increases from 1077 to the maximum learning rate over the first 750 steps of training. All models use
ZeRO to shard the optimiser state (Rajbhandari et al., 2020). Additional infrastructure details can be
found in Rae et al. (2021).
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Listing 1 | Jax implementation of the chunked cross attention, simplified.

= 128 # Sequence length

16 # Chunk length

32 # Retrieval length

= 4 # Number of neighbours
= 16 # Embedding size

=n // m # Number of chunks

Qo ~ B 3B
|

Parameters

= jnp.zeros((d, d))
= jnp.zeros((d, d))
= Jjnp.zeros((d, d))

< ) O #*

def relative_positional_encodings (attending_length, attended_length):
# Classical relative positional encodings

def cross_attention (chunk, neighbour) :
m, d = chunk.shape
r, d = neighbour.shape
queries = chunk @ Q
keys = neighbour @ K
logits = queries @ keys.T
values = neighbour @ V
return logits, values

def multi_neighbour_cross_attention (chunk, neighbours) :
m, d = chunk.shape
k, r, d = neighbours.shape

logits, values = jnp.vectorize(cross_attention,
signature=’ (m,d), (r,d)->(m,r), (r,d) ") (
chunk, neighbours)

assert logits.shape == (k, m, r)

assert values.shape == (k, r, d)

logits += relative_positional_encodings(m, r) [None, :, :]
logits = jnp.moveaxis(logits, 0, -1).reshape((m, r * k))
values = Jjnp.moveaxis(values, 0, 1).reshape((r » k, d))

return Jjax.nn.softmax (logits) @ wvalues

def multi_chunk_cross_attention (observation, neighbours) :
attending_chunks = Jjnp.pad(observation[m-1:],
((0, m - 1), (0, 0)),
mode="constant’) .reshape(l, m, d)
chunked_output = jnp.vectorize (multi_neighbour_cross_attention,
signature=’ (m,d), (k,r,d)->(m,d) ") (
attending_chunks, neighbours)
assert chunked_output.shape == (1, m, d)
output = Jjnp.pad(chunked_output.reshape(n, d),
((m - 1, 0), (0, 0)),
mode='constant’) [:n]
return output

observation = jnp.zeros((n, d)) # Input
neighbours = jnp.zeros((l, k, r, d))
h = multi_chunk_cross_attention (observation, neighbours)

assert h.shape == (n, d) # Output



varuna
Highlight


Improving language models by retrieving from trillions of tokens

Table 10 | RETrRO model hyperparameters, along with the size of the decoder.

Baseline dmoger  dfspw  # heads Head size # layers P Pgne Max LR
247M 896 3584 16 64 12 [6,9,12] [1] 2x107*
564M 1536 6144 12 128 12 (6,9,12] [1] 2x1074

1,574M 2048 8192 16 128 24 [9,12,...,24] [1] 2x107*

7,505M 4096 16384 32 128 32 [9,12,...,32] [1] 1x107*

Table 11 | Hyperparameters for the Wikitext103 experiments presented in Table 4. We use the same
learning rate schedule for the baseline and the RETRoO-fitting. For RETRO-fitting, we reset the
schedule i.e. the schedule starts from step 0, not from step 35,000.

Model Number of layers 18
d 1024
drrw 4096
Key size 64
Value size 64
Number of heads 16
Training data Dataset Wikitext103train
Sequence length 3072
Batch size 128
Tokenizer vocabulary size 128,000
Optimisation  optimiser Adam
Adam’s 1 0.9
Adam’s 5 0.95
Adam’s € le-8
Dropout rate 0.25
Schedule Learning rate start le-7
Learning rate max 2.5e-4
Learning rate min 2e-5
Warmup steps 4,000
Cosine cycle steps 100,000
Evaluation Overlapping proportion 87.5%

C.2. Wikitext103 comparison

We provide more details on our Wikitext103 results presented in §4.1 and Table 4. We train a baseline
transformer on the Wikitext103 training set with the hyperparameters presented in Table 11. The
learning rate ramps linearly from 1 x 1077 to 2.5 x 10~* in the first 4,000 steps, then decays to
2 x 107> at 100,000 steps using a cosine schedule. The baseline checkpoint at step 35,000 has the
lowest perplexity on Wikitext103 valid, of 21.58, for overlapping proportion of 75% (sliding window
evaluation that only uses probabilities for tokens that have at least 75% of the sequence length of
context, when available). We use this checkpoint for all our baseline and kNN-LM numbers reported
in Table 4, except that Table 4 reports for an overlapping proportion of 87.5 %, which slightly lowers
the perplexity of our baseline to 21.53 on Wikitext103 valid.

We also use the 35,000 step baseline checkpoint as initialization for a RETRofit, which otherwise
uses the same optimiser and schedule hyperparameters but only trains the new retrieval weights, as
explained in §4.2. Our best RETROfit checkpoint has a Wikitext103 valid perplexity 18.46, when
retrieving from Wikipedia. We use this RETRO checkpoint in Table 4 for all other retrieval sets. The
evaluation curves for our baseline and RETROfit is shown if Fig. 7 (left). In this particular case,
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because Wikitext103 is quite small, training a RETRO model from scratch led to weaker results than
the baseline, at least when retrieving from Wikipedia, as we couldn’t find an effective way to mitigate
the increased over-fitting due to the additional weights of RETRO.

We also re-implement kNN-LM using the same tokenizer and dataset that we use for our base-
line and RETRoOfitting experiments. kNN-LM has probabilities pynn.tm = Apry + (1 — A) prwvny With
prnn (ng) o exp(—ady). To tune A and «, we begin with « = 0.0012, which corresponds to the inverse
of the standard deviation of the norm of the embeddings that we use as keys and queries for kNN-LM.
We find the best A = 0.118. We then find the best « = 0.00785 for that value of A. Fig. 7 center and
right respectively show the perplexity of kNN-LM as a function of A and a.

> —— Baseline RETROfit —— kNN-LM

S 241 244 244

g
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5 221 221 /22

©
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o
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3
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Figure 7 | Wikitext103valid perplexities. Left: Baseline and RETROfit (initialized from baseline’s
checkpoint at 35,000 steps) perplexities as a function of training steps. Center and right: kNN-LM
perplexity as a function of A (for a = 0.0012) and « (for A = 0.12) respectively.

C.3. RETRoOfitting baseline models experiments

In Table 12, we give the hyperparameters used for RETROfitting the models on Massive Text.

Table 12 | Hyperparameters for the RETRoOfitting experiments

Model Layers with RETRO-block (P) Learning rate Batch size
172M Every 3 from 6 2x107% - 2x10°° 256
425M Every 3" from 6 2x107% - 2x107° 256
1.5B Every 3" from 6 2x10™% - 2x10°° 256
7.5B Every 3" from 6 1x10% > 1x107° 256

C.4. Question answering experiments

We fine-tune our 7.5B RETRO model for 25,000 steps, using a batch size of 128, a learning rate
cosine scheduled from 107° to 107, with a linear ramp of 750 steps. We use dropout in the decoder
only, as it performs better than using dropout in both the encoder and the decoder. Each neighbour
is formatted as title: {title}, source: {source}. We use the top 20 neighbours from
DpRr when training and evaluating.
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Table 13 | Performance of RETRoO for different variants. Model performance on C4 evaluation set,
measured in bytes-per-bits, for a 247M parameter model trained with a 157 billion token schedule.

Ablation group Ablation C4 eval bpb
Model RETRO 0.822
No query conditioning 0.829
No CA positional encodings 0.826
Shared embeddings 0.823
6-layer encoder 0.821
Retrieval values Neighbours N 0.950
Continuations F 0.895
No retrieval 0.987
Training neighbours 1 training neighbours 0.858
4 training neighbours 0.847
Cross attention position CA top layer (1/12) 0.827
CA mid layer (6/12) 0.823
CA top layer (12/12) 0.831
CA all layers 0.860
CA every 3 from 1 0.823

D. Model ablations

We validate important design choices by evaluating what happens when we do not include them. We
use the 247M parameter model for all experiments and we train on a compressed 157 billion token
schedule for all ablation experiments. We describe results relative to the default settings presented in
the main text and recalled here. We report C4 evaluation loss at the end of the training process, and
also compares how the evaluation loss decrease versus the training time, measured relatively to the
baseline training time. Results are reported in Fig. 8 and Table 13.

Using relative encodings in cross-attention. Using relative encodings in cross-attention, as de-
scribed in §B.1.2, provides a pure improvement both in the number of steps to reach a given perfor-
mance and computational efficiency.

Conditioning the encoder on the previous chunk. Conditioning the encoder on the previous
chunk’s intermediate embeddings, as described in §B.1.1, provides a pure improvement both in term
of number of steps and computational efficiency.

Sharing embeddings. Sharing embeddings across the encoder and the decoder does not affect
performance. This motivates us using separate embeddings, as it allows to have a narrower encoder
than decoder as we scale up the decoder size.

Attending neighbours and their continuation. RETRO models are trained by attending, for a
given chunk, to both the neighbours of the preceding chunk and their continuation in time. We
measure how training and evaluating RETRO models on neighbours only and their continuation
only affects performance. Overall, attending to neighbours only provides 22% of the performance
improvement due to retrieval in RETRO, while attending the future of the neighbours gives 56% of
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Figure 8 | Computational efficiency for different variants. We report the training curves plotting
C4 evaluation bytes per bits against time, relative to the time taken to train the baseline RETRO
model. Overall, our design choices are optimal in term of computational efficiency.

the performance. Attending to both neighbours and their continuation is the most efficient choice
both in term of final performance and training efficiency.

Training a deeper encoder. All models in the text use a relatively small RETRO encoder. We
experimented with a 3x deeper encoder. We found that this resulted in a tiny decrease in loss— 0.15%
at the cost of a larger training time (+20%). Overall, using a shallow encoder is the best choice in
term of training efficiency.

Training with multiple neighbours. We measure the effect of training on a single retrieved neigh-
bour, as well as training on 4 neighbours (RETRO uses 2 neighbours in training). Training on a
single neighbour results in a large decrease in performance, while training on 4 neighbours does not
give substantial performance improvement at the end of training, but induces a large computational
overhead. Overall, we find that using 2 neighbours is the best choice in term of training efficiency.
Furthermore, evaluation can be done with additional neighbours.

Frequency of cross-attention. We measure how the frequency of cross-attention in the decoder
affects performance. Overall, attending only once at the top or the bottom layer is a bad choice, while
attending once on a mid-depth layer is relatively sound. We choose to have cross-attention every 3
layer as this provides a good trade-off between performance and run-time.
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E. Qualitative experiments

We illustrate the usage of RETRO models by looking at the perplexity of evaluation samples and by
producing samples autoregressively.

E.1. Inspecting neighbours and perplexities on evaluation data

To build an intuition of what kind of information is leveraged by RETRO models, we suggest to
have a closer look at a few evaluation documents and the corresponding retrieved data in Tables
16, 17, 18 and 19. In these tables, the 4 rows corresponds to the first 4 chunks of the documents.
The left-most column shows the chunk C, from the document being evaluated, where each token is
coloured by the negative cross entropy loss difference Lrgrro[orr] — LRETRO, @ POSitive Value, coloured
in yellow, indicates that RETRO performs better when it has access to neighbours data. The second
columns also shows the evaluated chunk C, but where each token i is coloured by the length of the
longest common prefix (LCP) with the preceding neighbours, i.e. the largest integer j such that

the prefix (x;—j_1,...,x;) also appears in RET(C,-1). Conversely, columns three and four show the
first two neighbours and their continuation, respectively [N}, F!] and [N2, F2] coloured by LCP with

subsequent chunk C,;;. LCP colouring helps to visually identify where the evaluated document
overlaps the retrieved data. Note that the first chunk, C;, in the second column is not coloured as
it does not have any preceding neighbours to compute LCP with. Similarly, we do not show the
neighbours of the fourth chunk, as these are not used to condition any of the first four chunks.

Our qualitative analysis exhibits two major behaviors.

Firstly, we observe that sometimes, specific facts in C, can be extracted from the preceding
neighbours RET(C,-1) and that this can correspond to significant reduction in loss from the RETRO
model for the corresponding tokens. Some examples of such behavior include the journal name
Publishers Weekly in Table 16, the football team name Tyrone in Table 17 or the event dates 25 August
to 6 September 2020 in Table 18. In these three examples, the evaluated data consists of recent
Wikipedia articles written in September 2021, after we built our retrieval dataset (see section §A.2).
Yet, relevant information to predict this new data was available in the pre-existing retrieval data and
the RETRO model seems to be able to correctly leverage it.

On the other hand, we also observe that some of the evaluation data can partially leak in our
training and retrieval data, despite the use of deduplication. RETRO can dramatically exploit such
leakage. Table 19 illustrates this behavior, where the chunks C, and C3 largely overlaps RET(C7) and
RET(C2) respectively, up to small formatting differences, which leads to much lower RETRO loss for
all the corresponding tokens. Fig. 6 shows that it is possible to quantify how much of the RETRO loss
reduction is due to each of these two behaviors, by filtering out evaluation chunks that overlaps with
the retrieval set.

E.2. Inspecting samples

We can follow the same procedure as above on samples generated using RETRO models, in order to
better understand where retrieval data had an influence on sampling. We show examples of samples
obtained using the 7.5B RETR0 model in Table 6, 7, 20 and 21.

E.3. Neighbour quantification

To quantify a notion of distance between the source document and the retrieved chunks, we can ask
the distance between source articles when retrieving only from Wikipedia. Consonni et al. (2019)
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Figure 9 | Wikipedia link-distance between retrieved articles. For each sequences, chunk combina-
tion we compute the link distance between the target and the top-5 neighbours using only Wikipedia.
The rank shows the relative neighbour distance, where rank-1 is the first neighbour and rank 5 is
the fifth. The different colours represent link distance. Because we do not retrieve from the same
document, 1 is the smallest value. We find, on average, the distance between random articles with a
path between them is over 5.0

provides a Wikipedia link dataset which, for each article, contains a list of neighbouring articles.
Using this, we construct a directed graph and compute the distance from one page to another. In
Fig. 9 we compute the link-distance between training sequences and the retrieved neighbours. We
find that retrieved documents tend to be from articles that are quite close to the article containing
the target. Furthermore, we find that on average the distance increases with rank, suggesting that
our neighbours are both useful and that the order is reasonable. This provides confidence for our
larger-scale experiments where document distance is less well defined.

F. Complementary quantitative results

We report tables corresponding to quantitative figures of the main text, as well as further filtered
language model results on the Pile.

F.1. Main text datasets

We report the performance of RETRO and baseline models, measured in bits-per-bytes on evaluation
set, in Table 14.

F.2. The Pile

In Fig. 4, we compare RETRO against Jurassic-1 (Lieber et al., 2021). The full bits-per-bytes results
are reported in Table 15.

F.3. Filtered results

Distribution of leaked chunks in our main evaluation sets. We evaluate leakage between the
evaluation sets and the training set by measuring the proportion of evaluation chunks with a certain
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Table 14 | Full results for the main language modelling datasets. First three sets of rows correspond
to Fig. 1, last set of rows to Fig. 3.

Baseline RETRO [Off] RETRO[On]

172M 425M 1.5B 7.5B | 172M 425M 1.5B 7.5B | 172M 425M 1.5B 7.5B
C4 Eval bpb | 098 092 0.84 0.78| 098 092 0.84 0.78| 082 077 0.71 0.66
C4 Eval bpb (900B) - - - - - - - - 0.88 083 0.76 0.71
C4 Eval bpb (360B) - - - - - - - - 0.92 0.87 0.80 0.74
C4 Eval bpb (180B) - - - - - - - - 094 089 0.81 0.75
C4 Eval bpb (90B) - - - - - - - - 0.95 0.89 0.82 0.76
C4 Eval bpb (36B) - - - - - - - - 096 090 0.83 0.77
C4 Eval bpb (18B) - - - - - - - - 096 091 0.83 0.77
C4 Eval bpb (9B) - - - - - - - - 096 091 0.83 0.77
C4 Eval bpb (4B) - - - - - - - - 097 091 0.84 0.78
C4 Eval bpb (2B) - - - - - - - - 097 091 0.84 0.78
C4 Eval bpb (k = 1) - - - - - - - - 0.84 0.79 0.73 0.67
C4 Eval bpb (k = 2) - - - - - - - - 083 0.78 0.72 0.67
C4 Eval bpb (k = 3) - - - - - - - - 0.82 0.78 0.71 0.66
C4 Eval bpb (k = 4) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k =5) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k = 10) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k = 20) - - - - - - - - 0.82 0.77 0.71 0.66
C4 Eval bpb (k = 30) - - - - - - - - 0.82 0.77 0.71 0.65
C4 Eval bpb (k = 40) - - - - - - - - 0.83 0.77 0.71 0.65
C4 Eval bpb (k = 50) - - - - - - - - 0.83 0.78 0.71 0.66
C4 Eval bpb (k = 60) - - - - - - - - 0.84 0.78 0.72 0.66
C4 Eval bpb (k = 70) - - - - - - - - 084 0.79 0.72 0.66
C4 Eval bpb (k = 80) - - - - - - - - 0.85 0.79 0.73 0.66
C4 Eval bpb (k = 90) - - - - - - - - 0.85 0.79 0.73 0.66
C4 Eval bpb (k = 100) - - - - - - - - 0.85 0.79 - 0.67
Lambada Accuracy 0.42 051 0.61 0.69| 047 0.54 0.63 0.70| 0.52 0.60 0.67 0.73
Curation Corpus bpb 0.69 063 0.56 0.52| 0.68 0.64 0.57 0.51 | 0.66 0.61 0.55 0.50
Wikitext103 Perplexity 042 051 0.61 0.69| 047 054 0.63 0.70 | 0.52 0.60 0.67 0.73
Wikipedia Sept. 2021 bpb | 0.85 0.78 0.71 0.65| 0.86 0.79 0.71 0.65| 0.79 0.73 0.66 0.61

overlap r(C). We show histograms in Fig. 10. We can see that C4 has some slight overlaps between
train and evaluation. Similarly, chunks of Wikitext103 appear in the training set despite having
removed the actual Wikitext103 evaluation documents from the training set. On the other hand, our
Wikipedia September 21 dataset shows almost no leakage (data being original documents that did
not exist at training data creation), and neither does Curation Corpus.

Filtered results on the Pile.

We report chunk overlap distribution and filtered performance curves

on the Pile in Fig. 12 and Fig. 11, respectively. The qualitative interpretation of the filtered curves
is the same: RETRO models exploit leakage more, but the performance improvement they provide
remains significant even on original chunks that haven’t been observed in the training set.
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Table 15 | Full results on The Pile, measured in bits-per-bytes. Jurassic-1 and GPT-3 numbers are
taken from Lieber et al. (2021). Gopher numbers are taken from Rae et al. (2021).

Chunk density

Subset 7B Baseline (Ours) GPT-3 Jurassic-l Gopher 7.5B RETRO
arxiv 0.742 0.838 0.680 0.641 0.714
books3 0.792 0.802 0.835 0.706 0.653
dm_mathematics 1.177 1.371 1.037 1.135 1.164
freelaw 0.576 0.612 0.514 0.506 0.499
github 0.420 0.645 0.358 0.367 0.199
gutenberg pg 19 0.803 1.163 0.890 0.652 0.400
hackernews 0.971 0.975 0.869 0.888 0.860
nih_exporter 0.650 0.612 0.590 0.590 0.635
opensubtitles 0.974 0.932 0.879 0.894 0.930
philpapers 0.760 0.723 0.742 0.682 0.699
pile cc 0.771 0.698 0.669 0.688 0.626
pubmed_abstracts 0.639 0.625 0.587 0.578 0.542
pubmed_central 0.588 0.690 0.579 0.512 0.419
stackexchange 0.714 0.773 0.655 0.638 0.624
ubuntu_irc 1.200 0.946 0.857 1.081 1.178
uspto_backgrounds 0.603 0.566 0.537 0.545 0.583
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Figure 10 | Distribution of the overlap between evaluation and train chunks for C4, Curation

Corpus, Wikitext103 and Wikipedia Sept. 2021.
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Figure 11 | Filtered evaluation losses on the Pile, with baseline Transformers and RETRoO.
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Table 16 | Great Circle (novel), from Wikipedia September 21. The article is about a recent novel and chunks
Cs3 and C4 are specifically about its reception. The name Publishers Weekly of the journal that reviewed the
novel appears both in the neighbours [N}, F%], [N2, F%] of chunk C3 and in the subsequent chunk C4, where the
loss for those tokens is significantly reduced by RETRoO.

Cy colored by LCP with RET(Cy—1) [N}, F1] colored by LCP with Cyyq [N2, F2] colored by LCP with Cyyq
LCP=0,1,2,34,>5 LCP=0,1,2,34>5

Cy colored by loss difference

LReTrRo[OFF] ~ LRETROX™=05,=0,> 0.5 LCP=0,1,2,34>5

Great Circle (novel)Great Circle i

s a 2021 novel by Maggie Shipstead,
published on May 4, 2021, by Alfred
A. Knopf.The novel has been shortl
isted for the 2021 Booker Prize.Sy
nopsis The novel consists of two pa
rallel narratives about two fictiona

1 women. One is

Great Circle (novel) Great Circle i

s a 2021 novel by Maggie Shipstead,
published on May 4, 2021, by Alfred
A. Knopf. The novel has been shortl
isted for the 2021 Booker Prize. Sy
nopsis The novel consists of two pa
rallel narratives about two fictiona

1 women. One is

about the disappeared 20th-century
aviator Marian Graves, while the oth
er is about the struggling 21st-cent
ury Hollywood actress Hadley Baxter,
who is attempting to make a film ab
out Marian. Hadley’s narrative is to
1d in the first-person, while Marian

’s sections are told in the third-pe
rson

.Reception Great Circle received
very favorable reviews, with a cumul

ative "Rave" rating a review ag
gregator website Marks, based o
n 22 book reviews fro: li
terary critics. The nove at
number fourteen on The New York Tim
es Hardcover fiction best-seller lis

t for the week ending May

8, 2021. Critics praised the novel

for sustainin, an Sh
ipstead’ and intricatt

el structure for perfectly interweav
ing the parallel narratives, despite
the time circumstances separati
ng them.In its starred review, Pub
lishers Weekly wrote, "Shipstead man
ages to portray both/Marian’s and Ha
dley’s
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Table 17 | All-Ireland Senior Football Championship Final, from Wikipedia September 21. The name of
the team Tyrone appears both in the second neighbours [N?, Ff] of chunk C; and in the subsequent chunk Cs,
where the loss for those tokens is significantly reduced by RETRO.

Cy colored by loss difference
LRrrro[OFF] ~ LRETROE=0I5,=0, > 0.5

[Nl%, Ff] colored by LCP with C41
1CP=0,1,2,34,>5

[Nl}, F& ] colored by LCP with C,41
1CP=0,1,2,34,>5

Cy colored by LCP with RET(Cy—1)
LCP=0,1,2,34>5

2021 All-Ireland Senior Football Cha
mpionship FinalThe 2021 All-Irelan

d Senior Football Championship Final
was the 134th final of the All-Irel

and Senior Football Championship and
the culmination of the 2021 All-Ire
land Senior Football Championship. T
he match was played at Croke Park in
Dublin on 11 September 2021. It was
originally scheduled

2021 All-Ireland Senior Football Cha
mpionship Final The 2021 All-Irelan

d Senior Football Championship Final
was the 134th final of the All-Irel

and Senior Football Championship and
the culmination of the 2021 All-Ire
land Senior Football Championship. T
he match was played at Croke Park in
Dublin on 11 September 2021. It was
originally scheduled

for 28 August but had to be postpon

Tyrone took

Mayo, in what

11th consecutive final since
1989, losing 6 finals in 9 years, wi
th thi on

eline t Mayo lost
Dublin.Background were aiming

to win their fourth title and first
All-Ireland since 1951. Since then,
they had lost ten finals (1989, 1996

, 1997, 2004, 2006,
2012, 2013, 2016, app
eared in thei winnin

g on three occasions in 2003, 2005 a
nd 2008.This final was the fi

be contested by county te: C
onnacht and Ulster, the other finals
were 1925 (Galway beat Cavan), 1943
(Roscommon beat Cavan), 1948 (Cavan
beat
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Table 18 | 2020 Summer Paralympics, from Wikipedia September 21. The original dates of the event,
25 August to 6 September 2020, appears both in the neighbors [N, F}], [NZ, F?] of chunk C; and in the
subsequent chunk Co, where the loss for those tokens is significantly reduced by RETRoO. Interestingly, in this
case, the neighbors were written at a time when the event hadn’t yet been postponed.

Cy colored by loss difference

LRETRO[OFF] ~ LRETROS=0:5,=0,> 0.5

[N2, F2] colored by LCP with Cyy1
LCP=0,1,2,34>5

[N}, F1] colored by LCP with Cyyq
LCP=0,1,2,34,>5

Cy colored by LCP with RET(C,—1)
LCP=0,1,2,34,>5

2020 Summer ParalympicsThe , brand
ed as the Tokyo 2020 Paralympic Game
s, was an international multi-sport
parasports event held from 24 August
to 5 September 2021 in Tokyo, Japan

. They were the 16th Summer Paralymp
ic Games as organized by the Interna
tional Paralympic Committee (IPC).

2020 Summer Paralympics The , brand ic:
ed as the Tokyo 2020 Paralympic Game
s, was an international multi-sport
parasports event held from 24 August
to 5 September 2021 in Tokyo, Japan

. They were the 16th Summer Paralymp
ic Games as organized by the Interna
tional Paralympic Committee (IPC).

mer Olympics and.

cs
the COVID-19 pandemic,

Originally scheduled to take place f
25 August to 6 September 2020, i

March 2020 both the 2020 Summer Ol

ympics an ics were postpone

d year due to the COVID-19 pa
ndemic, tlalr Games s

till referred to 2020 for m

arketingfand branding purposes.
with the Olympics, th la
y held behind

rgel

place
August to 6 Septembe:
Summer Ol
ympics and ics
the COVID-19 pa
ndemic,

closed doors with no outside specta

tors due to a state of emergency in

the Greater Tokyo Area and other pre
es. The were the

Paralympics hosted by Tokyo s

ince 1964, and th ics

in Japan overall since the
Winter Paralympics in Nagano. Th
e

featured

22 sports, with
ekwondo both making
ic debut to replace f
-side and sailing.
topped the medal table fo
consecutive Paralympics, wii go
Ids and 207 total medals. Great Brit
ain finished second for the ninth t
ime,
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Table 19 | Daniel Radcliffe, from Wikitext103Valid, retrieval data from c4. The chunks C; and C3 are almost
entirely retrieved from neighbours [N, F1] and [N, F2] respectively, up to formatting differences, which
dramatically reduces the loss for these tokens. This example illustrates that when training data leaks into
evaluation sets despite deduplication, our RETRO model can directly exploit this leakage.

Cy colored by loss difference

LRETRO[OFF] — LReTro €=05,=0,> 0.5

Cy colored by LCP with RET(Cy,—1)
LCP=0,1,2,34,>5

[N}, F1] colored by LGP with Cypq
LCP=0,1,2,34>5

[N2, F2] colored by LCP with Cyyq
LCP=0,1,2,34>5

= Daniel Radcliffe =Daniel Jacob R
adcliffe ( born 23 July 1989 ) is an
English actor who rose to prominenc
e as the title character in the Harr

y Potter film series. He made his ac
ting debut at 10 years of age in BBC
One’s 1999 television film David Co
ppetfield, followed by his cinematic
debut

= Daniel Radcliffe = Daniel Jacob R
adcliffe ( born 23 July 1989 ) is an
English actor who rose to prominenc
e as the title character in the Harr

y Potter film series. He made his ac
ting debut at 10 years of age in BBC
One’s 1999 television film David Co
pperfield, followed by his cinematic
debut

2001’s The Tai
lor of Panama. At age 11, he was cas
t as Harry Potter in the first Harry

Potter film, and starred in the ser
ies for 10 years until the release o
f the eighth and final film in 2011.
Radcliffe began to branch out to s
tage acting in 2007, starring in the

London and Ne:

Equus, and

2001’s The Tailor
of Panama. At age 11, he was cast as
Harry Potter in the first Harry Pot
ter film, and starred in the series
for 10 years until the release of th
e eighth and final film in 2011./Rad
cliffe began to branch out to stage
acting in 2007, starring in the Lond
on and Ne:

and in the

in 2001’s The Tailor of Panama. At
age 11, he was cast as Harry Potter
in the first Harry Potter film, and
starred in the series for 10 years u
ntil the release of the eighth and f
inal film in 2011.Radcliffe began

to branch out to stage acting in 200
7, starring in the London and New

[in 2001’s The Tailor of Panama. At
age 11, he was cast as Harry Potter
in the first Harry Potter film, and
starred in the series for 10 years u
ntil the release of the eighth and f
inal film in 2011.Radcliffe began

to branch out to stage acting in 200
7, starring in the London and New

productions of Equus, and in the
2011 Broadway revival of the musical
How to Succeed in Business Without
Really Trying. He starred in the 201
2 horror film The Woman in Black, an
d played beat poet Allen Ginsberg in
the 2013 independent film Kill Your
|Darlings.He has contributed to ma
ny charities

productions of Equ
us, and in the 2011 Broadway revival
of the musical How to Succeed in Bu
siness Without Really Trying. He sta
rred in the 2012 horror film The Wom
an in Black, and played beat poet Al
i in the 2013 independent

York productions of Equus, and in t
he 2011 Broadway revival of the musi
cal How to Succeed in Business Witho
ut Really Trying. He starred in the
2012 horror film The Woman in Black,
and played beat poet Allen Ginsberg
in the 2013 independent film Kill Y
our|<unk>.He has contributed to ma
ny charities,

|York productions of Equus, and in t
he 2011 Broadway revival of the musi
cal How to Succeed in Business Witho
ut Really Trying. He starred in the
2012 horror film The Woman in Black,
and played beat poet Allen Ginsberg
in the 2013 independent film Kill Y
our]<unk>:He has contributed to ma
ny charities,

Trevor Project. He

including <unk> Hospice| Ch
ildren] and The Trevor Projec
uicide prevention amo

gave him its Hero Award in 20
11.= = Early life = =Radcliffe w
as born in West London, England. He
is the only child of Alan George Rad
cliffe, a literary agent, and

and The Trevor Proje:
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Table 20 | Sample - Déclaration des droits de ’lhomme: Article premier. The RETRO [OFF] sample has
correct syntax and is almost plausible but is hallucinated. The RETRO[ON] sample is correctly copied from
neighbour data, and robustly re-formated according to our prompt.

[Nl}, F&] colored by LCP with C,,41 [NS, F&] colored by LCP with C,,1

Prompt and sample of RETRO[OFF] Prompt and sample of RETRO[ON]

colored by LCP with RET(Cy—1)
LCP=0,1,2,34>5

LCP=0,1,2,34>5

LCP=0,1,2,34>5

Article premier - Les hommes
naissent et demeurent libres e
t égaux en droits. Les distinc
tions sociales ne peuvent étre
fondées que sur l'utilité com
mune. Article 2. - Le but de
toute association politique e
st la conservation des droits
naturels et

Article premier - Les hommes
naissent et demeurent libres e
t égaux en droits. Les distinc
tions sociales ne peuvent étre
fondées que sur l'utilité com
mune. Article 2. - Le but de
toute association politique e
st la conservation des droits
naturels et

Ces droits sont la liberté, la
propriété, la stireté; et la r
ésistance a ression.Art
icl de toute s
ouveraineté réside essentielle
ment dans la nation. Nul corps
, nul individu ne peut exercer

autorité qui nen

Ces droits
sont la liberté, la propriété
, la slireté, et la résistance
a l'oppression..
de toute

réside essentiellement dans
la/Nation. Nul corps, nul indi
vidu ne peut exercer d’autorit
é qui

imprescriptibles de 'homme,
et par conséquent la garantie
a chacun des droits suivants
: Article 3. - La propriété

est un droit inviolable et sa
cré. Toute personne a le droit
de procéder a sa propre cons
ervation. Article 4. - Le

ibles de 'homme.
Ces droits sont la liberté, la
propriété, la streté/et la ré
sistance a 'oppression.Arti
cle 3.- Le principe de toute
souveraineté réside essentiel
lement dans la nation. Nul cor
ps, nul individu ne peut exerc
er d’autorité qui n

’en émane expresséme

nsiste a pouvoir faire tout ce
quine nuit pas a autrui : ai
nsi, I'exercice des droits nat
urelsde chaque homme n’a de b
ornes que celles qui assurent
auxautres membres de la socié
té la jouissance de

en émane
expressément.Article
liberté consiste a pouvoir fai
re tout ce qui ne nuit pas a a
utrui : ainsi, 'exercice des
droits naturels de chaque homm
e n’a de bornes que celles qui
assurent aux autres membres d
e la société la jouissance de
ces mémes|droits. Ces bornes

but de toute association est

la défense des droits de 'hom
me et du citoyen. Tout citoye
n a le droit de participer a1

a direction des affaires publi
ques. Article 5. - L'impuni

té n’a jamais été et ne sera j
amais une fin en elle-méme. I’
imp

Jen émane expressément.Artic
le 4.- La liberté consiste &
pouvoir faire tout ce qui ne
nuit pas a autrui : ainsi, I'e
xercice des droits naturels de

chaque homme n’a de bornes qu

e celles qui assurent aux autr
es membres de la société la jo
uissance de ces mémes

nes ne peuvent étre déterminée
s que par la loi.Article[54

|La loi ’a le droit de défend

re que les actions nuisibles a

la société. Tout ce qui n’est
pas défendu par la loi ne peu

t étre empéché, et nul ne peut
étre|

nes ne peuvent étre déterminée
s que par la loi.Article/53

|La loi m’a le droit de défend

re que les actions nuisibles &

la société. Tout ce qui n’est
pas défendu par la loi ne peu

t étre empéché, et nul ne peut
étr

unité, comme le despotisme, s
’est toujours révélée étre un
instrument d’oppression. La ty
rannie qui s’est élue juge su
préme de la conscience des aut
res ne peut étre jugée. La jus
tice se trouve dans la consci
ence de chaque citoyen,

. Ces bornes ne peuvent
étre déterminées que par la 1
oi.Article/5: La loi n’a
le droit de défendre que les a
ctions nuisibles a la société.
Tout ce qui n’est pas défendu
par la loi ne peut étre empéc
hé, et nul ne peut étre
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Table 21 | Sample - Decimals of x. The RETRO[OFF] sample quickly diverges two digits after the end
of the prompt whereas RETRO[ON] correctly outputs a large number of & digits, directly copied from the
neighbours data.

Prompt and sample of RETRO [OFF]

Prompt and sample of RETRO [ON]
colored by LCP with RET(C,—1)
LCP=0,1,2,34,>5

[N,} s F,} ] colored by LCP with C,,,1

LCP=0,1,2,34>5

[N&, Fg] colored by LCP with C,,41

LCP=0,1,2,34,>5

Pi = 3. 1415926535 8979323846
2643383279 5028841971 69399375
10 5820974944 5923078164 06286
20899 8628034825 3421170679

Pi = 3. 1415926535 8979323846
2643383279 5028841971 69399375
10 5820974944 5923078164 06286
20899 8628034825 3421170679

“1415926535 8979323846 26433
83279 5028841971 693993751058
20974944 5923078164 0628620899
8628034825 34211706798214808
651 3282306647 0938446095 5058
223172 53594081284811174502 8
410270193 8521105559 644622948
9 54930381964428810975 665933
4461 2847564823 3786783

46 2643383279 5028841971 69399
37510 5820974944 592307816406
28620899 8628034825 3421170679
8214808651 3282306647 0938446
095 50582231725359408128 4811
174502 8410270193 8521105559 6
446229489 5493038196/442881097
56659334461 2847564823 378678
3165 2712019091 4564856692 346
0

8294049602 8988496069 9858349
065 9873246379 9644789435 8628
730709 6540159079 5944069810 5
992965913 7095378412 69378359

8214808651 3282306647 0938446
095 5058223172 53594081284811
174502 8410270193 8521105559 6
446229489 5493038196442881097
56659334461 284

651 3282306647 0938446095 5058
223172 5359408128 4811174502
8410270193 8521105559 64462294
89 54930381964428810975 66593
84461 2847564823 3786783165 27
12019091 4564856692 346034861
0 4543266482 1339360726 024914
12737245870066 0631558817 488
1520920 9628292540 91715864

47 0938446095 5058223172 53594
081284811174502 8410270193 85
21105559 6446229489 5493038196
4428810975 6659334461 2847564
823 3786783165 27120190914564
856692 3460348610 4543266482 1
339360726 0249141273724587006
6 0631558817 4881520920 962829
2540 91715364367892590360

10 6940372045 7088679512 85612
30857 9046461290 9276642155 56
54603269 5656128798 6366475705
6294954741 5886335339 57657

7564823 3786783165 2712019091
4564856692 3460348610 45432664
821339360726 024914127372458
70066 0631558817 4881520920 96
28292540 91715

23 3786783165 2712019091 4564
856692 3460348610 4543266482 1
339360726 0249141273724587006
60631558817 4881520920 962829
2540 9171536436,7892590360 01
13305305 4882046652 1384146951
94151160943305727036 5759591
953 0921861173 8193261179 3105
118548 0744623799 627495

165 27120190914564856692 3460
348610 4543266482 1339360726 0
2491412737245870066 063155881
7 4881520920 9628292540 917153
64367892590360 0113305305 488
2046652 1384146951 9415116094
3305727036 5759591953 09218611
73 8193261179 310511854807446
23799 6274956735 1885752724 89
1227

76345 5770886953 7988876910 79
66169745 6493974637 6345801550
6663542854 6333764630 6356284
271 7885339804 5672434

864367892590360 0113305305 48
82046652 1384146951 9415116094
3305727036 5759591953 0921861
173 8193261179 31051185480744
623799 6274
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