{ "cells": [ { "metadata": {}, "cell_type": "code", "outputs": [], "execution_count": null, "source": "!pip install labml-nn", "id": "c5ed37230628ee76" }, { "metadata": {}, "cell_type": "code", "source": [ "from labml_nn.lora.experiment import Trainer\n", "from labml import experiment" ], "id": "1b9da2e59ffce5d5", "outputs": [], "execution_count": null }, { "cell_type": "code", "id": "initial_id", "metadata": { "collapsed": true }, "source": "experiment.create(name=\"lora_gpt2\")", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "trainer = Trainer()", "id": "31c9bc08eca2592", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "experiment.configs(trainer)", "id": "fb6ce74326558948", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "trainer.initialize()", "id": "1456cfab47dee3b", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": [ "with experiment.start():\n", " trainer.run()" ], "id": "3fe4068fd2df9094", "outputs": [], "execution_count": null }, { "metadata": {}, "cell_type": "code", "source": "", "id": "d3c3c723ebbe854a", "outputs": [], "execution_count": null } ], "metadata": { "kernelspec": { "display_name": "Python (ml)", "language": "python", "name": "ml" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 5 }