{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "HyperLSTM", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "accelerator": "GPU" }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "AYV_dMVDxyc2" }, "source": [ "[![Github](https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social)](https://github.com/labmlai/annotated_deep_learning_paper_implementations)\n", "[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/hypernetworks/experiment.ipynb) \n", "\n", "## HyperLSTM\n", "\n", "This is an experiment training Shakespear dataset with HyperLSTM from paper HyperNetworks." ] }, { "cell_type": "code", "metadata": { "id": "ZCzmCrAIVg0L" }, "source": [ "!pip install labml-nn" ], "outputs": [], "execution_count": null }, { "cell_type": "code", "metadata": { "id": "0hJXx_g0wS2C" }, "source": [ "from labml import experiment\n", "from labml_nn.hypernetworks.experiment import Configs" ], "outputs": [], "execution_count": null }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 255 }, "id": "WQ8VGpMGwZuj", "outputId": "5833cc50-26a8-496e-e729-88f42b3f4651" }, "source": [ "# Create experiment\n", "experiment.create(name=\"hyper_lstm\", comment='')\n", "# Create configs\n", "conf = Configs()\n", "# Load configurations\n", "experiment.configs(conf,\n", " # A dictionary of configurations to override\n", " {'tokenizer': 'character',\n", " 'text': 'tiny_shakespeare',\n", " 'optimizer.learning_rate': 2.5e-4,\n", " 'optimizer.optimizer': 'Adam',\n", " 'prompt': 'It is',\n", " 'prompt_separator': '',\n", "\n", " 'rnn_model': 'hyper_lstm',\n", "\n", " 'train_loader': 'shuffled_train_loader',\n", " 'valid_loader': 'shuffled_valid_loader',\n", "\n", " 'seq_len': 512,\n", " 'epochs': 128,\n", " 'batch_size': 2,\n", " 'inner_iterations': 25})\n", "\n", "\n", "# Set models for saving and loading\n", "experiment.add_pytorch_models({'model': conf.model})\n", "\n", "conf.init()" ], "outputs": [], "execution_count": null }, { "cell_type": "code", "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 425 }, "id": "f07vAOaHwumr", "outputId": "6b51205e-3852-4dce-f7a7-f3ba4066ba21" }, "source": [ "# Start the experiment\n", "with experiment.start():\n", " # `TrainValidConfigs.run`\n", " conf.run()" ], "outputs": [], "execution_count": null }, { "cell_type": "code", "metadata": { "id": "crH6MzKmw-SY" }, "source": [ "" ], "outputs": [], "execution_count": null } ] }