📚 notes

This commit is contained in:
Varuna Jayasiri
2020-10-28 11:35:06 +05:30
parent bb297cf761
commit fda13baee7

View File

@ -611,22 +611,29 @@ def setup_dataloader(self: Configs):
def train():
"""
## Train Cycle GAN
"""
# Create configurations
conf = Configs()
# Create an experiment
experiment.create(name='cycle_gan')
experiment.configs(conf, {
'dataset_name': 'summer2winter_yosemite'
}, 'run')
# Calculate configurations.
# It will calculate `conf.run` and all other configs required by it.
experiment.configs(conf, {'dataset_name': 'summer2winter_yosemite'}, 'run')
# Register models for saving and loading.
# `get_modules` gives a dictionary of `nn.Modules` in `conf`.
# You can also specify a custom dictionary of models.
experiment.add_pytorch_models(get_modules(conf))
# Start and watch the experiment
with experiment.start():
# Run the training
conf.run()
def plot_image(img: torch.Tensor):
"""
Plots an image with matplotlib
### Plots an image with matplotlib
"""
from matplotlib import pyplot as plt
@ -641,7 +648,10 @@ def plot_image(img: torch.Tensor):
plt.show()
def sample():
def evaluate():
"""
## Evaluate trained Cycle GAN
"""
# Set the run uuid from the training run
trained_run_uuid = 'f73c1164184711eb9190b74249275441'
# Create configs object
@ -704,4 +714,4 @@ def sample():
if __name__ == '__main__':
train()
# sample()
# evaluate()