Conv mixer (#100)

This commit is contained in:
Varuna Jayasiri
2021-10-14 18:41:37 +05:30
committed by GitHub
parent 217b56a1b1
commit f8abd6a276
11 changed files with 1413 additions and 16 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 170 KiB

View File

@ -0,0 +1,377 @@
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="Train ConvMixer on CIFAR 10"/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Train ConvMixer on CIFAR 10"/>
<meta name="twitter:description" content="Train ConvMixer on CIFAR 10"/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/conv_mixer/experiment.html"/>
<meta property="og:title" content="Train ConvMixer on CIFAR 10"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Train ConvMixer on CIFAR 10"/>
<meta property="og:description" content="Train ConvMixer on CIFAR 10"/>
<title>Train ConvMixer on CIFAR 10</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/conv_mixer/experiment.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">conv_mixer</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/conv_mixer/experiment.py">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Train a <a href="index.html">ConvMixer</a> on CIFAR 10</h1>
<p>This script trains a ConvMixer on CIFAR 10 dataset.</p>
<p>This is not an attempt to reproduce the results of the paper.
The paper uses image augmentations
present in <a href="https://github.com/rwightman/pytorch-image-models">PyTorch Image Models (timm)</a>
for training. We haven&rsquo;t done this for simplicity - which causes our validation accuracy to drop.</p>
<p><a href="https://app.labml.ai/run/0fc344da2cd011ecb0bc3fdb2e774a3d"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">20</span><span></span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span>
<span class="lineno">21</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span>
<span class="lineno">22</span><span class="kn">from</span> <span class="nn">labml_nn.experiments.cifar10</span> <span class="kn">import</span> <span class="n">CIFAR10Configs</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Configurations</h2>
<p>We use <a href="../experiments/cifar10.html"><code>CIFAR10Configs</code></a> which defines all the
dataset related configurations, optimizer, and a training loop.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">25</span><span class="k">class</span> <span class="nc">Configs</span><span class="p">(</span><span class="n">CIFAR10Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>Size of a patch, $p$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">34</span> <span class="n">patch_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">2</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Number of channels in patch embeddings, $h$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">36</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">256</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Number of <a href="#ConvMixerLayer">ConvMixer layers</a> or depth, $d$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">38</span> <span class="n">n_layers</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">8</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Kernel size of the depth-wise convolution, $k$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">40</span> <span class="n">kernel_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">7</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Number of classes in the task</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="n">n_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<h3>Create model</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span><span class="nd">@option</span><span class="p">(</span><span class="n">Configs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
<span class="lineno">46</span><span class="k">def</span> <span class="nf">_conv_mixer</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">Configs</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">50</span> <span class="kn">from</span> <span class="nn">labml_nn.conv_mixer</span> <span class="kn">import</span> <span class="n">ConvMixerLayer</span><span class="p">,</span> <span class="n">ConvMixer</span><span class="p">,</span> <span class="n">ClassificationHead</span><span class="p">,</span> <span class="n">PatchEmbeddings</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Create ConvMixer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">53</span> <span class="k">return</span> <span class="n">ConvMixer</span><span class="p">(</span><span class="n">ConvMixerLayer</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">kernel_size</span><span class="p">),</span> <span class="n">c</span><span class="o">.</span><span class="n">n_layers</span><span class="p">,</span>
<span class="lineno">54</span> <span class="n">PatchEmbeddings</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">patch_size</span><span class="p">,</span> <span class="mi">3</span><span class="p">),</span>
<span class="lineno">55</span> <span class="n">ClassificationHead</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">d_model</span><span class="p">,</span> <span class="n">c</span><span class="o">.</span><span class="n">n_classes</span><span class="p">))</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">58</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Create experiment</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">60</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">&#39;ConvMixer&#39;</span><span class="p">,</span> <span class="n">comment</span><span class="o">=</span><span class="s1">&#39;cifar10&#39;</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Create configurations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">62</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">Configs</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>Load configurations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">64</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="p">{</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Optimizer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">66</span> <span class="s1">&#39;optimizer.optimizer&#39;</span><span class="p">:</span> <span class="s1">&#39;Adam&#39;</span><span class="p">,</span>
<span class="lineno">67</span> <span class="s1">&#39;optimizer.learning_rate&#39;</span><span class="p">:</span> <span class="mf">2.5e-4</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Training epochs and batch size</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span> <span class="s1">&#39;epochs&#39;</span><span class="p">:</span> <span class="mi">150</span><span class="p">,</span>
<span class="lineno">71</span> <span class="s1">&#39;train_batch_size&#39;</span><span class="p">:</span> <span class="mi">64</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Simple image augmentations</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">74</span> <span class="s1">&#39;train_dataset&#39;</span><span class="p">:</span> <span class="s1">&#39;cifar10_train_augmented&#39;</span><span class="p">,</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Do not augment images for validation</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">76</span> <span class="s1">&#39;valid_dataset&#39;</span><span class="p">:</span> <span class="s1">&#39;cifar10_valid_no_augment&#39;</span><span class="p">,</span>
<span class="lineno">77</span> <span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Set model for saving/loading</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">79</span> <span class="n">experiment</span><span class="o">.</span><span class="n">add_pytorch_models</span><span class="p">({</span><span class="s1">&#39;model&#39;</span><span class="p">:</span> <span class="n">conf</span><span class="o">.</span><span class="n">model</span><span class="p">})</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Start the experiment and run the training loop</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">81</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span>
<span class="lineno">82</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">86</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">87</span> <span class="n">main</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>

715
docs/conv_mixer/index.html Normal file
View File

@ -0,0 +1,715 @@
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="A PyTorch implementation/tutorial of the paper &quot;Patches Are All You Need?&quot;"/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Patches Are All You Need? (ConvMixer)"/>
<meta name="twitter:description" content="A PyTorch implementation/tutorial of the paper &quot;Patches Are All You Need?&quot;"/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/conv_mixer/index.html"/>
<meta property="og:title" content="Patches Are All You Need? (ConvMixer)"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Patches Are All You Need? (ConvMixer)"/>
<meta property="og:description" content="A PyTorch implementation/tutorial of the paper &quot;Patches Are All You Need?&quot;"/>
<title>Patches Are All You Need? (ConvMixer)</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/conv_mixer/index.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="index.html">conv_mixer</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/conv_mixer/__init__.py">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Patches Are All You Need? (ConvMixer)</h1>
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation of the paper
<a href="https://papers.labml.ai/paper/TVHS5Y4dNvM">Patches Are All You Need?</a>.</p>
<p><img alt="ConvMixer diagram from the paper" src="conv_mixer.png" /></p>
<p>ConvMixer is Similar to <a href="../transformers/mlp_mixer/index.html">MLP-Mixer</a>.
MLP-Mixer separates mixing of spatial and channel dimensions, by applying a MLP across spatial dimension
and then an MLP across the channel dimension
(spatial MLP replaces the <a href="../transformers/vit/index.html">ViT</a> attention
and channel MLP is the <a href="../transformers/feed_forward.html">FFN</a> of ViT).</p>
<p>ConvMixer use a $1 \times 1$ convolution for channel mixing and a
depth-wise convolution for spatial mixing.
Since it&rsquo;s a convolution instead of a full MLP across the space, it mixes only the nearby batches in
contrast to ViT or MLP-Mixer.
Also the MLP-mixer uses MLPs of two layers for each mixing and ConvMixer uses a single layer for each mixing.</p>
<p>The paper recommends removing the residual connection across the channel mixing (point-wise convolution),
and having only a residual connection over the spatial mixing (depth-wise convolution).
They also use <a href="../normalization/batch_norm/index.html">Batch normalization</a> instead
of [Layer normalization)(../normalization/layer_norm/index.html).</p>
<p>Here&rsquo;s <a href="experiment.html">an experiment</a> that trains ConvMixer on CIFAR-10.</p>
<p><a href="https://app.labml.ai/run/0fc344da2cd011ecb0bc3fdb2e774a3d"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">38</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">39</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
<span class="lineno">40</span>
<span class="lineno">41</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
<span class="lineno">42</span><span class="kn">from</span> <span class="nn">labml_nn.utils</span> <span class="kn">import</span> <span class="n">clone_module_list</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<p><a id="ConvMixerLayer"></p>
<h2>ConvMixer layer</h2>
<p></a></p>
<p>This is a single ConvMixer layer. The model will have a series of these.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span><span class="k">class</span> <span class="nc">ConvMixerLayer</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<ul>
<li><code>d_model</code> is the number of channels in patch embeddings, $h$</li>
<li><code>kernel_size</code> is the size of the kernel of spatial convolution, $k$</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">kernel_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">59</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Depth-wise convolution is separate convolution for each channel.
We do this with a convolution layer with the number of groups equal to the number of channels.
So that each channel is it&rsquo;s own group.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">63</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth_wise_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span>
<span class="lineno">64</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">kernel_size</span><span class="p">,</span>
<span class="lineno">65</span> <span class="n">groups</span><span class="o">=</span><span class="n">d_model</span><span class="p">,</span>
<span class="lineno">66</span> <span class="n">padding</span><span class="o">=</span><span class="p">(</span><span class="n">kernel_size</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="o">//</span> <span class="mi">2</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Activation after depth-wise convolution</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">68</span> <span class="bp">self</span><span class="o">.</span><span class="n">act1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">GELU</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Normalization after depth-wise convolution</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Point-wise convolution is a $1 \times 1$ convolution.
i.e. a linear transformation of patch embeddings</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">74</span> <span class="bp">self</span><span class="o">.</span><span class="n">point_wise_conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Activation after point-wise convolution</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">76</span> <span class="bp">self</span><span class="o">.</span><span class="n">act2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">GELU</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Normalization after point-wise convolution</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">78</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">80</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>For the residual connection around the depth-wise convolution</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">82</span> <span class="n">residual</span> <span class="o">=</span> <span class="n">x</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Depth-wise convolution, activation and normalization</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">85</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">depth_wise_conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">86</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">87</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm1</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>Add residual connection</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">90</span> <span class="n">x</span> <span class="o">+=</span> <span class="n">residual</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Point-wise convolution, activation and normalization</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">93</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">point_wise_conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">94</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">95</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">98</span> <span class="k">return</span> <span class="n">x</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p><a id="PatchEmbeddings"></p>
<h2>Get patch embeddings</h2>
<p></a></p>
<p>This splits the image into patches of size $p \times p$ and gives an embedding for each patch.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">101</span><span class="k">class</span> <span class="nc">PatchEmbeddings</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<ul>
<li><code>d_model</code> is the number of channels in patch embeddings $h$</li>
<li><code>patch_size</code> is the size of the patch, $p$</li>
<li><code>in_channels</code> is the number of channels in the input image (3 for rgb)</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">110</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">patch_size</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-18'>
<div class='docs'>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">116</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-19'>
<div class='docs'>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>We create a convolution layer with a kernel size and and stride length equal to patch size.
This is equivalent to splitting the image into patches and doing a linear
transformation on each patch.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">121</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">kernel_size</span><span class="o">=</span><span class="n">patch_size</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="n">patch_size</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-20'>
<div class='docs'>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Activation function</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">123</span> <span class="bp">self</span><span class="o">.</span><span class="n">act</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">GELU</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-21'>
<div class='docs'>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Batch normalization</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">125</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">BatchNorm2d</span><span class="p">(</span><span class="n">d_model</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-22'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<ul>
<li><code>x</code> is the input image of shape <code>[batch_size, channels, height, width]</code></li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">127</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-23'>
<div class='docs'>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Apply convolution layer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">132</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-24'>
<div class='docs'>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Activation and normalization</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">134</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">act</span><span class="p">(</span><span class="n">x</span><span class="p">)</span>
<span class="lineno">135</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">norm</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-25'>
<div class='docs'>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">138</span> <span class="k">return</span> <span class="n">x</span></pre></div>
</div>
</div>
<div class='section' id='section-26'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p><a id="ClassificationHead"></p>
<h2>Classification Head</h2>
<p></a></p>
<p>They do average pooling (taking the mean of all patch embeddings) and a final linear transformation
to predict the log-probabilities of the image classes.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">141</span><span class="k">class</span> <span class="nc">ClassificationHead</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-27'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
<ul>
<li><code>d_model</code> is the number of channels in patch embeddings, $h$</li>
<li><code>n_classes</code> is the number of classes in the classification task</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">151</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">n_classes</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-28'>
<div class='docs'>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">156</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-29'>
<div class='docs'>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p>Average Pool</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">158</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">AdaptiveAvgPool2d</span><span class="p">((</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-30'>
<div class='docs'>
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Linear layer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">160</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">d_model</span><span class="p">,</span> <span class="n">n_classes</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-31'>
<div class='docs'>
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">162</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-32'>
<div class='docs'>
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Average pooling</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">164</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">pool</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-33'>
<div class='docs'>
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
<p>Get the embedding, <code>x</code> will have shape <code>[batch_size, d_model, 1, 1]</code></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">166</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="p">[:,</span> <span class="p">:,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-34'>
<div class='docs'>
<div class='section-link'>
<a href='#section-34'>#</a>
</div>
<p>Linear layer</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">168</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">linear</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-35'>
<div class='docs'>
<div class='section-link'>
<a href='#section-35'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">171</span> <span class="k">return</span> <span class="n">x</span></pre></div>
</div>
</div>
<div class='section' id='section-36'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-36'>#</a>
</div>
<h2>ConvMixer</h2>
<p>This combines the patch embeddings block, a number of ConvMixer layers and a classification head.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">174</span><span class="k">class</span> <span class="nc">ConvMixer</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-37'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-37'>#</a>
</div>
<ul>
<li><code>conv_mixer_layer</code> is a copy of a single <a href="#ConvMixerLayer">ConvMixer layer</a>.
We make copies of it to make ConvMixer with <code>n_layers</code>.</li>
<li><code>n_layers</code> is the number of ConvMixer layers (or depth), $d$.</li>
<li><code>patch_emb</code> is the <a href="#PatchEmbeddings">patch embeddings layer</a>.</li>
<li><code>classification</code> is the <a href="#ClassificationHead">classification head</a>.</li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">181</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">conv_mixer_layer</span><span class="p">:</span> <span class="n">ConvMixerLayer</span><span class="p">,</span> <span class="n">n_layers</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span>
<span class="lineno">182</span> <span class="n">patch_emb</span><span class="p">:</span> <span class="n">PatchEmbeddings</span><span class="p">,</span>
<span class="lineno">183</span> <span class="n">classification</span><span class="p">:</span> <span class="n">ClassificationHead</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-38'>
<div class='docs'>
<div class='section-link'>
<a href='#section-38'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">191</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='section' id='section-39'>
<div class='docs'>
<div class='section-link'>
<a href='#section-39'>#</a>
</div>
<p>Patch embeddings</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">193</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_emb</span> <span class="o">=</span> <span class="n">patch_emb</span></pre></div>
</div>
</div>
<div class='section' id='section-40'>
<div class='docs'>
<div class='section-link'>
<a href='#section-40'>#</a>
</div>
<p>Classification head</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">195</span> <span class="bp">self</span><span class="o">.</span><span class="n">classification</span> <span class="o">=</span> <span class="n">classification</span></pre></div>
</div>
</div>
<div class='section' id='section-41'>
<div class='docs'>
<div class='section-link'>
<a href='#section-41'>#</a>
</div>
<p>Make copies of the <a href="#ConvMixerLayer">ConvMixer layer</a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">197</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_mixer_layers</span> <span class="o">=</span> <span class="n">clone_module_list</span><span class="p">(</span><span class="n">conv_mixer_layer</span><span class="p">,</span> <span class="n">n_layers</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-42'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-42'>#</a>
</div>
<ul>
<li><code>x</code> is the input image of shape <code>[batch_size, channels, height, width]</code></li>
</ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">199</span> <span class="k">def</span> <span class="nf">forward</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-43'>
<div class='docs'>
<div class='section-link'>
<a href='#section-43'>#</a>
</div>
<p>Get patch embeddings. This gives a tensor of shape <code>[batch_size, d_model, height / patch_size, width / patch_size]</code>.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">204</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">patch_emb</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-44'>
<div class='docs'>
<div class='section-link'>
<a href='#section-44'>#</a>
</div>
<p>Pass through <a href="#ConvMixerLayer">ConvMixer layers</a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">207</span> <span class="k">for</span> <span class="n">layer</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv_mixer_layers</span><span class="p">:</span>
<span class="lineno">208</span> <span class="n">x</span> <span class="o">=</span> <span class="n">layer</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-45'>
<div class='docs'>
<div class='section-link'>
<a href='#section-45'>#</a>
</div>
<p>Classification head, to get logits</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">211</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classification</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-46'>
<div class='docs'>
<div class='section-link'>
<a href='#section-46'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">214</span> <span class="k">return</span> <span class="n">x</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>

View File

@ -599,18 +599,6 @@ q(x_t|x_0) &= \mathcal{N} \Big(x_t; \sqrt{\bar\alpha_t} x_0, (1-\bar\alpha_t) \m
<div class="highlight"><pre><span class="lineno">287</span> <span class="k">return</span> <span class="n">F</span><span class="o">.</span><span class="n">mse_loss</span><span class="p">(</span><span class="n">noise</span><span class="p">,</span> <span class="n">eps_theta</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-33'>
<div class='docs'>
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
<h2>Here&rsquo;s our Twitter thread with a summary</h2>
<p><blockquote class="twitter-tweet"><p lang="en" dir="ltr">Annotated <a href="https://twitter.com/PyTorch?ref_src=twsrc%5Etfw">@PyTorch</a> implementation of &quot;Denoising Diffusion Probabilistic Models&quot; by <a href="https://twitter.com/hojonathanho?ref_src=twsrc%5Etfw">@hojonathanho</a> <a href="https://twitter.com/ajayj_?ref_src=twsrc%5Etfw">@ajayj_</a> <a href="https://twitter.com/pabbeel?ref_src=twsrc%5Etfw">@pabbeel</a> <a href="https://twitter.com/berkeley_ai?ref_src=twsrc%5Etfw">@berkeley_ai</a><br><br>📝 Annotated code <a href="https://t.co/IxJMNQxJMa">https://t.co/IxJMNQxJMa</a><br>🖥 Github <a href="https://t.co/he5yIZZlB2">https://t.co/he5yIZZlB2</a><br>📎 Paper <a href="https://t.co/FjpamUVhLI">https://t.co/FjpamUVhLI</a><br><br>🧵👇 <a href="https://t.co/5SIZud6OnH">pic.twitter.com/5SIZud6OnH</a></p>&mdash; labml.ai (@labmlai) <a href="https://twitter.com/labmlai/status/1446676487361290240?ref_src=twsrc%5Etfw">October 9, 2021</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script></p>
</div>
<div class='code'>
<div class="highlight"><pre></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>

View File

@ -102,6 +102,7 @@ implementations.</p>
<h4><a href="lstm/index.html">LSTM</a></h4>
<h4><a href="hypernetworks/hyper_lstm.html">HyperNetworks - HyperLSTM</a></h4>
<h4><a href="resnet/index.html">ResNet</a></h4>
<h4><a href="conv_mixer/index.html">ConvMixer</a></h4>
<h4><a href="capsule_networks/index.html">Capsule Networks</a></h4>
<h4><a href="gan/index.html">Generative Adversarial Networks</a></h4>
<ul>

View File

@ -344,7 +344,7 @@
<url>
<loc>https://nn.labml.ai/diffusion/ddpm/index.html</loc>
<lastmod>2021-10-08T16:30:00+00:00</lastmod>
<lastmod>2021-10-09T16:30:00+00:00</lastmod>
<priority>1.00</priority>
</url>
@ -881,6 +881,20 @@
</url>
<url>
<loc>https://nn.labml.ai/conv_mixer/index.html</loc>
<lastmod>2021-10-14T16:30:00+00:00</lastmod>
<priority>1.00</priority>
</url>
<url>
<loc>https://nn.labml.ai/conv_mixer/experiment.html</loc>
<lastmod>2021-10-14T16:30:00+00:00</lastmod>
<priority>1.00</priority>
</url>
<url>
<loc>https://nn.labml.ai/uncertainty/evidence/index.html</loc>
<lastmod>2021-08-21T16:30:00+00:00</lastmod>