mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-10-29 17:57:14 +08:00
Merge branch 'master' of github.com:lab-ml/transformers
merge
This commit is contained in:
@ -28,6 +28,8 @@ and
|
||||
#### ✨ [Capsule Networks](http://lab-ml.com/labml_nn/capsule_networks/)
|
||||
|
||||
#### ✨ [Generative Adversarial Networks](http://lab-ml.com/labml_nn/gan/)
|
||||
* [GAN with a multi-layer perceptron](http://lab-ml.com/labml_nn/gan/simple_mnist_experiment.html)
|
||||
* [GAN with deep convolutional network](http://lab-ml.com/labml_nn/gan/dcgan.html)
|
||||
|
||||
### Installation
|
||||
|
||||
|
||||
@ -1,3 +1,10 @@
|
||||
"""
|
||||
This is an implementation of paper
|
||||
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434).
|
||||
|
||||
This implementation is based on the [PyTorch DCGAN Tutorial](https://pytorch.org/tutorials/beginner/dcgan_faces_tutorial.html).
|
||||
"""
|
||||
|
||||
import torch.nn as nn
|
||||
|
||||
from labml import experiment
|
||||
@ -9,24 +16,30 @@ from labml_nn.gan.simple_mnist_experiment import Configs
|
||||
class Generator(Module):
|
||||
"""
|
||||
### Convolutional Generator Network
|
||||
|
||||
This is similar to the de-convolutional network used for CelebA faces,
|
||||
but modified for MNIST images.
|
||||
|
||||
<img src="https://pytorch.org/tutorials/_images/dcgan_generator.png" style="max-width:90%" />
|
||||
"""
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# The input is $1 \times 1$ with 100 channels
|
||||
self.layers = nn.Sequential(
|
||||
# Gives a 3x3 output
|
||||
# This gives $3 \times 3$ output
|
||||
nn.ConvTranspose2d(100, 1024, 3, 1, 0, bias=False),
|
||||
nn.BatchNorm2d(1024),
|
||||
nn.ReLU(True),
|
||||
# This gives a 7x7
|
||||
# This gives $7 \times 7$
|
||||
nn.ConvTranspose2d(1024, 512, 3, 2, 0, bias=False),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.ReLU(True),
|
||||
# This give 14x14
|
||||
# This give $14 \times 14$
|
||||
nn.ConvTranspose2d(512, 256, 4, 2, 1, bias=False),
|
||||
nn.BatchNorm2d(256),
|
||||
nn.ReLU(True),
|
||||
# This gives 28*28
|
||||
# This gives $28 \times 28$
|
||||
nn.ConvTranspose2d(256, 1, 4, 2, 1, bias=False),
|
||||
nn.Tanh()
|
||||
)
|
||||
@ -34,6 +47,7 @@ class Generator(Module):
|
||||
self.apply(_weights_init)
|
||||
|
||||
def __call__(self, x):
|
||||
# Change from shape `[batch_size, 100]` to `[batch_size, 100, 1, 1]`
|
||||
x = x.unsqueeze(-1).unsqueeze(-1)
|
||||
x = self.layers(x)
|
||||
return x
|
||||
@ -46,19 +60,20 @@ class Discriminator(Module):
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# The input is $28 \times 28$ with one channel
|
||||
self.layers = nn.Sequential(
|
||||
# This gives 14x14
|
||||
# This gives $14 \times 14$
|
||||
nn.Conv2d(1, 256, 4, 2, 1, bias=False),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
# This gives 7x7
|
||||
# This gives $7 \times 7$
|
||||
nn.Conv2d(256, 512, 4, 2, 1, bias=False),
|
||||
nn.BatchNorm2d(512),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
# This gives 3x3
|
||||
# This gives $3 \times 3$
|
||||
nn.Conv2d(512, 1024, 3, 2, 0, bias=False),
|
||||
nn.BatchNorm2d(1024),
|
||||
nn.LeakyReLU(0.2, inplace=True),
|
||||
# state size. (ndf*4) x 8 x 8
|
||||
# This gives $1 \times 1$
|
||||
nn.Conv2d(1024, 1, 3, 1, 0, bias=False),
|
||||
)
|
||||
self.apply(_weights_init)
|
||||
|
||||
Reference in New Issue
Block a user