mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 06:16:05 +08:00 
			
		
		
		
	sophia wip
This commit is contained in:
		
							
								
								
									
										124
									
								
								labml_nn/optimizers/sophia.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										124
									
								
								labml_nn/optimizers/sophia.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,124 @@
 | 
			
		||||
"""
 | 
			
		||||
---
 | 
			
		||||
title: Sophia Optimizer
 | 
			
		||||
summary: A simple PyTorch implementation/tutorial of Sophia optimizer
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
# Sophia Optimizer
 | 
			
		||||
 | 
			
		||||
This is a [PyTorch](https://pytorch.org) implementation of *Sophia-G* from paper
 | 
			
		||||
 [Sophia: A Scalable Stochastic Second-order Optimizer for Language Model Pre-training](https://papers.labml.ai/paper/2305.14342).
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
from typing import Dict, Any, Tuple, Optional
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from torch import nn
 | 
			
		||||
 | 
			
		||||
from labml_nn.optimizers import GenericAdaptiveOptimizer, WeightDecay
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Sophia(GenericAdaptiveOptimizer):
 | 
			
		||||
    """
 | 
			
		||||
    ## Sophia-G Optimizer
 | 
			
		||||
 | 
			
		||||
    We extend the class `GenericAdaptiveOptimizer` defined in [`__init__.py`](index.html)
 | 
			
		||||
    to implement the Sophia optimizer.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __init__(self, params,
 | 
			
		||||
                 lr: float = 1e-4, betas: Tuple[float, float] = (0.965, 0.99), eps: float = 1e-16,
 | 
			
		||||
                 rho: float = 0.04,
 | 
			
		||||
                 training_batch_tokens: int = None,
 | 
			
		||||
                 weight_decay: WeightDecay = WeightDecay(),
 | 
			
		||||
                 optimized_update: bool = True,
 | 
			
		||||
                 defaults: Optional[Dict[str, Any]] = None):
 | 
			
		||||
        """
 | 
			
		||||
        ### Initialize the optimizer
 | 
			
		||||
 | 
			
		||||
        * `params` is the list of parameters
 | 
			
		||||
        * `lr` is the learning rate $\alpha$
 | 
			
		||||
        * `betas` is a tuple of ($\beta_1$, $\beta_2$)
 | 
			
		||||
        * `eps` is $\epsilon$
 | 
			
		||||
        * `pho` is $\rho$
 | 
			
		||||
        * `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
 | 
			
		||||
        * `optimized_update` is a flag whether to optimize the bias correction of the second moment
 | 
			
		||||
          by doing it after adding $\epsilon$
 | 
			
		||||
        * `defaults` is a dictionary of default for group values.
 | 
			
		||||
         This is useful when you want to extend the class `Adam`.
 | 
			
		||||
        """
 | 
			
		||||
        if training_batch_tokens is None:
 | 
			
		||||
            raise RuntimeError('Please set the number of tokens per training batch.')
 | 
			
		||||
 | 
			
		||||
        defaults = {} if defaults is None else defaults
 | 
			
		||||
        defaults.update(weight_decay.defaults())
 | 
			
		||||
        defaults.update(dict(rho=rho, training_batch_tokens=training_batch_tokens))
 | 
			
		||||
        super().__init__(params, defaults, lr, betas, eps)
 | 
			
		||||
 | 
			
		||||
        self.weight_decay = weight_decay
 | 
			
		||||
        self.optimized_update = optimized_update
 | 
			
		||||
 | 
			
		||||
    def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
 | 
			
		||||
        """
 | 
			
		||||
        ### Initialize a parameter state
 | 
			
		||||
 | 
			
		||||
        * `state` is the optimizer state of the parameter (tensor)
 | 
			
		||||
        * `group` stores optimizer attributes of the parameter group
 | 
			
		||||
        * `param` is the parameter tensor $\theta_{t-1}$
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        # This is the number of optimizer steps taken on the parameter, $t$
 | 
			
		||||
        state['step'] = 0
 | 
			
		||||
        # state['hessian_updates']
 | 
			
		||||
        # Exponential moving average of gradients, $m_t$
 | 
			
		||||
        state['exp_avg'] = torch.zeros_like(param, memory_format=torch.preserve_format)
 | 
			
		||||
        # Exponential moving average of Hessian
 | 
			
		||||
        state['hessian'] = torch.zeros_like(param, memory_format=torch.preserve_format)
 | 
			
		||||
 | 
			
		||||
    def update_hessian(self, batch_size):
 | 
			
		||||
        for group in self.param_groups:
 | 
			
		||||
            beta1, beta2 = group['betas']
 | 
			
		||||
            for p in group['params']:
 | 
			
		||||
                if p.grad is None:
 | 
			
		||||
                    continue
 | 
			
		||||
                state = self.state[p]
 | 
			
		||||
 | 
			
		||||
                if len(state) == 0:
 | 
			
		||||
                    self.init_state(state, group, p)
 | 
			
		||||
 | 
			
		||||
                state['hessian'].mul_(beta2).addcmul_(p.grad, p.grad, value=(1 - beta2) * batch_size)
 | 
			
		||||
 | 
			
		||||
    def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
 | 
			
		||||
        """
 | 
			
		||||
        ### Take an update step for a given parameter tensor
 | 
			
		||||
 | 
			
		||||
        * `state` is the optimizer state of the parameter (tensor)
 | 
			
		||||
        * `group` stores optimizer attributes of the parameter group
 | 
			
		||||
        * `grad` is the current gradient tensor  $g_t$ for the parameter $\theta_{t-1}$
 | 
			
		||||
        * `param` is the parameter tensor $\theta_{t-1}$
 | 
			
		||||
        """
 | 
			
		||||
 | 
			
		||||
        # Calculate weight decay
 | 
			
		||||
        grad = self.weight_decay(param, grad, group)
 | 
			
		||||
 | 
			
		||||
        # Get $\beta_1$ and $\beta_2$
 | 
			
		||||
        beta1, beta2 = group['betas']
 | 
			
		||||
 | 
			
		||||
        rho = group['rho']
 | 
			
		||||
 | 
			
		||||
        # Get $m_{t-1}$ and $v_{t-1}$
 | 
			
		||||
        m, hessian = state['exp_avg'], state['hessain']
 | 
			
		||||
 | 
			
		||||
        # In-place calculation of $m_t$
 | 
			
		||||
        # $$m_t \leftarrow \beta_1 m_{t-1} + (1 - \beta_1) \cdot g_t$$
 | 
			
		||||
        m.mul_(beta1).add_(grad, alpha=1 - beta1)
 | 
			
		||||
 | 
			
		||||
        # Increment $t$ the number of optimizer steps
 | 
			
		||||
        state['step'] += 1
 | 
			
		||||
 | 
			
		||||
        # Get learning rate
 | 
			
		||||
        lr = group['lr']
 | 
			
		||||
 | 
			
		||||
        ratio = (m.abs() / (rho * hessian + group['training_batch_tokens'] * group['eps'])).clamp(None, 1)
 | 
			
		||||
 | 
			
		||||
        param.data.addcmul_(m.sign(), ratio, value=-lr)
 | 
			
		||||
		Reference in New Issue
	
	Block a user