mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
paper url fix
This commit is contained in:
@ -1,5 +1,5 @@
|
||||
{
|
||||
"<h1>Parity Task</h1>\n<p>This creates data for Parity Task from the paper <a href=\"https://papers.labml.ai/paper/1603.08983\">Adaptive Computation Time for Recurrent Neural Networks</a>.</p>\n<p>The input of the parity task is a vector with <span translate=no>_^_0_^_</span>'s <span translate=no>_^_1_^_</span>'s and <span translate=no>_^_2_^_</span>'s. The output is the parity of <span translate=no>_^_3_^_</span>'s - one if there is an odd number of <span translate=no>_^_4_^_</span>'s and zero otherwise. The input is generated by making a random number of elements in the vector either <span translate=no>_^_5_^_</span> or <span translate=no>_^_6_^_</span>'s.</p>\n": "<h1>\u30d1\u30ea\u30c6\u30a3\u30bf\u30b9\u30af</h1>\n<p>\u3053\u308c\u306b\u3088\u308a\u3001\u8ad6\u6587\u300c<a href=\"https://papers.labml.ai/paper/1603.08983\">\u30ea\u30ab\u30ec\u30f3\u30c8\u30cb\u30e5\u30fc\u30e9\u30eb\u30cd\u30c3\u30c8\u30ef\u30fc\u30af\u306e\u9069\u5fdc\u7684\u8a08\u7b97\u6642\u9593</a>\u300d\u304b\u3089\u30d1\u30ea\u30c6\u30a3\u30bf\u30b9\u30af\u306e\u30c7\u30fc\u30bf\u304c\u4f5c\u6210\u3055\u308c\u307e\u3059\u3002</p>\n<p>\u30d1\u30ea\u30c6\u30a3\u30bf\u30b9\u30af\u306e\u5165\u529b\u306f\u3001\u3068 <span translate=no>_^_2_^_</span> s <span translate=no>_^_0_^_</span> <span translate=no>_^_1_^_</span> \u306e\u4ed8\u3044\u305f\u30d9\u30af\u30c8\u30eb\u3067\u3001\u51fa\u529b\u306f s <span translate=no>_^_3_^_</span> \u306e\u30d1\u30ea\u30c6\u30a3\u3067\u3059\u3002s <span translate=no>_^_4_^_</span> \u306e\u6570\u304c\u5947\u6570\u306e\u5834\u5408\u306f 1\u3001\u305d\u308c\u4ee5\u5916\u306e\u5834\u5408\u306f 0 \u3067\u3059\u3002\u5165\u529b\u306f\u3001<span translate=no>_^_5_^_</span><span translate=no>_^_6_^_</span>\u30d9\u30af\u30c8\u30eb\u5185\u306e\u30e9\u30f3\u30c0\u30e0\u306a\u6570\u306e\u8981\u7d20\u3092\u307e\u305f\u306f\u306e\u3044\u305a\u308c\u304b\u306b\u3059\u308b\u3053\u3068\u306b\u3088\u3063\u3066\u751f\u6210\u3055\u308c\u307e\u3059\u3002</p>\n",
|
||||
"<h1>Parity Task</h1>\n<p>This creates data for Parity Task from the paper <a href=\"https://arxiv.org/abs/1603.08983\">Adaptive Computation Time for Recurrent Neural Networks</a>.</p>\n<p>The input of the parity task is a vector with <span translate=no>_^_0_^_</span>'s <span translate=no>_^_1_^_</span>'s and <span translate=no>_^_2_^_</span>'s. The output is the parity of <span translate=no>_^_3_^_</span>'s - one if there is an odd number of <span translate=no>_^_4_^_</span>'s and zero otherwise. The input is generated by making a random number of elements in the vector either <span translate=no>_^_5_^_</span> or <span translate=no>_^_6_^_</span>'s.</p>\n": "<h1>\u30d1\u30ea\u30c6\u30a3\u30bf\u30b9\u30af</h1>\n<p>\u3053\u308c\u306b\u3088\u308a\u3001\u8ad6\u6587\u300c<a href=\"https://arxiv.org/abs/1603.08983\">\u30ea\u30ab\u30ec\u30f3\u30c8\u30cb\u30e5\u30fc\u30e9\u30eb\u30cd\u30c3\u30c8\u30ef\u30fc\u30af\u306e\u9069\u5fdc\u7684\u8a08\u7b97\u6642\u9593</a>\u300d\u304b\u3089\u30d1\u30ea\u30c6\u30a3\u30bf\u30b9\u30af\u306e\u30c7\u30fc\u30bf\u304c\u4f5c\u6210\u3055\u308c\u307e\u3059\u3002</p>\n<p>\u30d1\u30ea\u30c6\u30a3\u30bf\u30b9\u30af\u306e\u5165\u529b\u306f\u3001\u3068 <span translate=no>_^_2_^_</span> s <span translate=no>_^_0_^_</span> <span translate=no>_^_1_^_</span> \u306e\u4ed8\u3044\u305f\u30d9\u30af\u30c8\u30eb\u3067\u3001\u51fa\u529b\u306f s <span translate=no>_^_3_^_</span> \u306e\u30d1\u30ea\u30c6\u30a3\u3067\u3059\u3002s <span translate=no>_^_4_^_</span> \u306e\u6570\u304c\u5947\u6570\u306e\u5834\u5408\u306f 1\u3001\u305d\u308c\u4ee5\u5916\u306e\u5834\u5408\u306f 0 \u3067\u3059\u3002\u5165\u529b\u306f\u3001<span translate=no>_^_5_^_</span><span translate=no>_^_6_^_</span>\u30d9\u30af\u30c8\u30eb\u5185\u306e\u30e9\u30f3\u30c0\u30e0\u306a\u6570\u306e\u8981\u7d20\u3092\u307e\u305f\u306f\u306e\u3044\u305a\u308c\u304b\u306b\u3059\u308b\u3053\u3068\u306b\u3088\u3063\u3066\u751f\u6210\u3055\u308c\u307e\u3059\u3002</p>\n",
|
||||
"<h3>Parity dataset</h3>\n": "<h3>\u30d1\u30ea\u30c6\u30a3\u30c7\u30fc\u30bf\u30bb\u30c3\u30c8</h3>\n",
|
||||
"<p> </p>\n": "<p></p>\n",
|
||||
"<p> Generate a sample</p>\n": "<p>\u30b5\u30f3\u30d7\u30eb\u3092\u751f\u6210</p>\n",
|
||||
|
@ -1,5 +1,5 @@
|
||||
{
|
||||
"<h1>Parity Task</h1>\n<p>This creates data for Parity Task from the paper <a href=\"https://papers.labml.ai/paper/1603.08983\">Adaptive Computation Time for Recurrent Neural Networks</a>.</p>\n<p>The input of the parity task is a vector with <span translate=no>_^_0_^_</span>'s <span translate=no>_^_1_^_</span>'s and <span translate=no>_^_2_^_</span>'s. The output is the parity of <span translate=no>_^_3_^_</span>'s - one if there is an odd number of <span translate=no>_^_4_^_</span>'s and zero otherwise. The input is generated by making a random number of elements in the vector either <span translate=no>_^_5_^_</span> or <span translate=no>_^_6_^_</span>'s.</p>\n": "<h1>\u0dc3\u0db8\u0dcf\u0db1\u0dcf\u0dad\u0dca\u0db8\u0dad\u0dcf\u0d9a\u0dcf\u0dbb\u0dca\u0dba\u0dba</h1>\n<p>\u0db8\u0dd9\u0dba\u0d9a\u0da9\u0daf\u0dcf\u0dc3\u0dd2 \u0dc0\u0dbd\u0dd2\u0db1\u0dca Parity Task \u0dc3\u0db3\u0dc4\u0dcf \u0daf\u0dad\u0dca\u0dad \u0db1\u0dd2\u0dbb\u0dca\u0db8\u0dcf\u0dab\u0dba \u0d9a\u0dbb\u0dba\u0dd2 <a href=\"https://papers.labml.ai/paper/1603.08983\">\u0d85\u0db1\u0dd4\u0dc0\u0dbb\u0dca\u0dad\u0dd3 \u0d9c\u0dab\u0db1\u0dba \u0d9a\u0dd2\u0dbb\u0dd3\u0db8\u0dda \u0d9a\u0dcf\u0dbd\u0dba \u0db4\u0dd4\u0db1\u0dbb\u0dcf\u0dc0\u0dbb\u0dca\u0dad\u0db1 \u0dc3\u0dca\u0db1\u0dcf\u0dba\u0dd4\u0d9a \u0da2\u0dcf\u0dbd \u0dc3\u0db3\u0dc4\u0dcf</a>. </p>\n<p>\u0dc3\u0db8\u0dcf\u0db1\u0dcf\u0dad\u0dca\u0db8\u0dad\u0dcf\u0d9a\u0dbb\u0dca\u0dad\u0dc0\u0dca\u0dba\u0dba\u0dda \u0d86\u0daf\u0dcf\u0db1\u0dba \u0dba\u0db1\u0dd4 <span translate=no>_^_0_^_</span><span translate=no>_^_1_^_</span><span translate=no>_^_2_^_</span>\u0d9c\u0dda \u0dc4\u0dcf \u0dc3\u0db8\u0d9f \u0daf\u0ddb\u0dc1\u0dd2\u0d9a\u0dba\u0d9a\u0dd2. \u0db4\u0dca\u0dbb\u0dad\u0dd2\u0daf\u0dcf\u0db1\u0dba \u0dba\u0db1\u0dd4 <span translate=no>_^_3_^_</span>\u0dc3\u0db8\u0dcf\u0db1\u0dcf\u0dad\u0dca\u0db8\u0dad\u0dcf\u0dc0\u0dba\u0dba\u0dd2 - \u0d91\u0dc4\u0dd2 \u0db1\u0db8\u0dca \u0d91\u0d9a\u0dca \u0dba\u0db1\u0dd4 \u0d94\u0dad\u0dca\u0dad\u0dda \u0dc3\u0d82\u0d9b\u0dca\u0dba\u0dcf\u0dc0\u0d9a\u0dca \u0dc0\u0db1 <span translate=no>_^_4_^_</span>\u0d85\u0dad\u0dbb \u0dc0\u0dd9\u0db1\u0dad\u0dca \u0d86\u0d9a\u0dcf\u0dbb\u0dba\u0d9a\u0dd2\u0db1\u0dca \u0dc1\u0dd4\u0db1\u0dca\u0dba \u0dc0\u0dda. \u0d86\u0daf\u0dcf\u0db1\u0dba \u0da2\u0db1\u0db1\u0dba \u0d9a\u0dbb\u0db1\u0dd4 \u0dbd\u0db6\u0db1\u0dca\u0db1\u0dda \u0daf\u0ddb\u0dc1\u0dd2\u0d9a\u0dba\u0dda \u0d85\u0dc4\u0db9\u0dd4 \u0db8\u0dd6\u0dbd\u0daf\u0dca\u0dbb\u0dc0\u0dca\u0dba \u0dc3\u0d82\u0d9b\u0dca\u0dba\u0dcf\u0dc0\u0d9a\u0dca <span translate=no>_^_5_^_</span> \u0dc4\u0ddd <span translate=no>_^_6_^_</span>\u0dba.</p>\n",
|
||||
"<h1>Parity Task</h1>\n<p>This creates data for Parity Task from the paper <a href=\"https://arxiv.org/abs/1603.08983\">Adaptive Computation Time for Recurrent Neural Networks</a>.</p>\n<p>The input of the parity task is a vector with <span translate=no>_^_0_^_</span>'s <span translate=no>_^_1_^_</span>'s and <span translate=no>_^_2_^_</span>'s. The output is the parity of <span translate=no>_^_3_^_</span>'s - one if there is an odd number of <span translate=no>_^_4_^_</span>'s and zero otherwise. The input is generated by making a random number of elements in the vector either <span translate=no>_^_5_^_</span> or <span translate=no>_^_6_^_</span>'s.</p>\n": "<h1>\u0dc3\u0db8\u0dcf\u0db1\u0dcf\u0dad\u0dca\u0db8\u0dad\u0dcf\u0d9a\u0dcf\u0dbb\u0dca\u0dba\u0dba</h1>\n<p>\u0db8\u0dd9\u0dba\u0d9a\u0da9\u0daf\u0dcf\u0dc3\u0dd2 \u0dc0\u0dbd\u0dd2\u0db1\u0dca Parity Task \u0dc3\u0db3\u0dc4\u0dcf \u0daf\u0dad\u0dca\u0dad \u0db1\u0dd2\u0dbb\u0dca\u0db8\u0dcf\u0dab\u0dba \u0d9a\u0dbb\u0dba\u0dd2 <a href=\"https://arxiv.org/abs/1603.08983\">\u0d85\u0db1\u0dd4\u0dc0\u0dbb\u0dca\u0dad\u0dd3 \u0d9c\u0dab\u0db1\u0dba \u0d9a\u0dd2\u0dbb\u0dd3\u0db8\u0dda \u0d9a\u0dcf\u0dbd\u0dba \u0db4\u0dd4\u0db1\u0dbb\u0dcf\u0dc0\u0dbb\u0dca\u0dad\u0db1 \u0dc3\u0dca\u0db1\u0dcf\u0dba\u0dd4\u0d9a \u0da2\u0dcf\u0dbd \u0dc3\u0db3\u0dc4\u0dcf</a>. </p>\n<p>\u0dc3\u0db8\u0dcf\u0db1\u0dcf\u0dad\u0dca\u0db8\u0dad\u0dcf\u0d9a\u0dbb\u0dca\u0dad\u0dc0\u0dca\u0dba\u0dba\u0dda \u0d86\u0daf\u0dcf\u0db1\u0dba \u0dba\u0db1\u0dd4 <span translate=no>_^_0_^_</span><span translate=no>_^_1_^_</span><span translate=no>_^_2_^_</span>\u0d9c\u0dda \u0dc4\u0dcf \u0dc3\u0db8\u0d9f \u0daf\u0ddb\u0dc1\u0dd2\u0d9a\u0dba\u0d9a\u0dd2. \u0db4\u0dca\u0dbb\u0dad\u0dd2\u0daf\u0dcf\u0db1\u0dba \u0dba\u0db1\u0dd4 <span translate=no>_^_3_^_</span>\u0dc3\u0db8\u0dcf\u0db1\u0dcf\u0dad\u0dca\u0db8\u0dad\u0dcf\u0dc0\u0dba\u0dba\u0dd2 - \u0d91\u0dc4\u0dd2 \u0db1\u0db8\u0dca \u0d91\u0d9a\u0dca \u0dba\u0db1\u0dd4 \u0d94\u0dad\u0dca\u0dad\u0dda \u0dc3\u0d82\u0d9b\u0dca\u0dba\u0dcf\u0dc0\u0d9a\u0dca \u0dc0\u0db1 <span translate=no>_^_4_^_</span>\u0d85\u0dad\u0dbb \u0dc0\u0dd9\u0db1\u0dad\u0dca \u0d86\u0d9a\u0dcf\u0dbb\u0dba\u0d9a\u0dd2\u0db1\u0dca \u0dc1\u0dd4\u0db1\u0dca\u0dba \u0dc0\u0dda. \u0d86\u0daf\u0dcf\u0db1\u0dba \u0da2\u0db1\u0db1\u0dba \u0d9a\u0dbb\u0db1\u0dd4 \u0dbd\u0db6\u0db1\u0dca\u0db1\u0dda \u0daf\u0ddb\u0dc1\u0dd2\u0d9a\u0dba\u0dda \u0d85\u0dc4\u0db9\u0dd4 \u0db8\u0dd6\u0dbd\u0daf\u0dca\u0dbb\u0dc0\u0dca\u0dba \u0dc3\u0d82\u0d9b\u0dca\u0dba\u0dcf\u0dc0\u0d9a\u0dca <span translate=no>_^_5_^_</span> \u0dc4\u0ddd <span translate=no>_^_6_^_</span>\u0dba.</p>\n",
|
||||
"<h3>Parity dataset</h3>\n": "<h3>\u0dc3\u0db8\u0dcf\u0db1\u0dcf\u0dad\u0dca\u0db8\u0dad\u0dcf\u0daf\u0dad\u0dca\u0dad \u0d9a\u0da7\u0dca\u0da7\u0dbd\u0dba</h3>\n",
|
||||
"<p> </p>\n": "<p> </p>\n",
|
||||
"<p> Generate a sample</p>\n": "<p> \u0db1\u0dd2\u0dba\u0dd0\u0daf\u0dd2\u0dba\u0d9a\u0dca\u0da2\u0db1\u0db1\u0dba \u0d9a\u0dbb\u0db1\u0dca\u0db1</p>\n",
|
||||
|
@ -1,5 +1,5 @@
|
||||
{
|
||||
"<h1>Parity Task</h1>\n<p>This creates data for Parity Task from the paper <a href=\"https://papers.labml.ai/paper/1603.08983\">Adaptive Computation Time for Recurrent Neural Networks</a>.</p>\n<p>The input of the parity task is a vector with <span translate=no>_^_0_^_</span>'s <span translate=no>_^_1_^_</span>'s and <span translate=no>_^_2_^_</span>'s. The output is the parity of <span translate=no>_^_3_^_</span>'s - one if there is an odd number of <span translate=no>_^_4_^_</span>'s and zero otherwise. The input is generated by making a random number of elements in the vector either <span translate=no>_^_5_^_</span> or <span translate=no>_^_6_^_</span>'s.</p>\n": "<h1>\u5947\u5076\u6821\u9a8c\u4efb\u52a1</h1>\n<p>\u8fd9\u5c06\u4ece\u8bba\u6587\u300a<a href=\"https://papers.labml.ai/paper/1603.08983\">\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u81ea\u9002\u5e94\u8ba1\u7b97\u65f6\u95f4\u300b\u4e2d\u4e3a</a>\u5947\u5076\u6821\u9a8c\u4efb\u52a1\u521b\u5efa\u6570\u636e\u3002</p>\n<p>\u5947\u5076\u6821\u9a8c\u4efb\u52a1\u7684\u8f93\u5165\u662f\u4e00\u4e2a\u5e26\u6709<span translate=no>_^_0_^_</span>'s \u548c<span translate=no>_^_1_^_</span>'s \u7684\u5411\u91cf\u3002\u8f93\u51fa\u662f<span translate=no>_^_2_^_</span>'s \u7684<span translate=no>_^_3_^_</span>\u5947\u5076\u6821\u9a8c\u2014\u2014\u5982\u679c\u6709\uff0c\u5219\u4e3a 1\u662f\u7684\u5947\u6570<span translate=no>_^_4_^_</span>\uff0c\u5426\u5219\u4e3a\u96f6\u3002\u8f93\u5165\u662f\u901a\u8fc7\u4f7f\u77e2\u91cf\u4e2d\u7684\u968f\u673a\u6570\u91cf\u7684\u5143\u7d20\u4e3a<span translate=no>_^_5_^_</span>\u6216\u800c\u751f\u6210<span translate=no>_^_6_^_</span>\u7684\u3002</p>\n",
|
||||
"<h1>Parity Task</h1>\n<p>This creates data for Parity Task from the paper <a href=\"https://arxiv.org/abs/1603.08983\">Adaptive Computation Time for Recurrent Neural Networks</a>.</p>\n<p>The input of the parity task is a vector with <span translate=no>_^_0_^_</span>'s <span translate=no>_^_1_^_</span>'s and <span translate=no>_^_2_^_</span>'s. The output is the parity of <span translate=no>_^_3_^_</span>'s - one if there is an odd number of <span translate=no>_^_4_^_</span>'s and zero otherwise. The input is generated by making a random number of elements in the vector either <span translate=no>_^_5_^_</span> or <span translate=no>_^_6_^_</span>'s.</p>\n": "<h1>\u5947\u5076\u6821\u9a8c\u4efb\u52a1</h1>\n<p>\u8fd9\u5c06\u4ece\u8bba\u6587\u300a<a href=\"https://arxiv.org/abs/1603.08983\">\u5faa\u73af\u795e\u7ecf\u7f51\u7edc\u7684\u81ea\u9002\u5e94\u8ba1\u7b97\u65f6\u95f4\u300b\u4e2d\u4e3a</a>\u5947\u5076\u6821\u9a8c\u4efb\u52a1\u521b\u5efa\u6570\u636e\u3002</p>\n<p>\u5947\u5076\u6821\u9a8c\u4efb\u52a1\u7684\u8f93\u5165\u662f\u4e00\u4e2a\u5e26\u6709<span translate=no>_^_0_^_</span>'s \u548c<span translate=no>_^_1_^_</span>'s \u7684\u5411\u91cf\u3002\u8f93\u51fa\u662f<span translate=no>_^_2_^_</span>'s \u7684<span translate=no>_^_3_^_</span>\u5947\u5076\u6821\u9a8c\u2014\u2014\u5982\u679c\u6709\uff0c\u5219\u4e3a 1\u662f\u7684\u5947\u6570<span translate=no>_^_4_^_</span>\uff0c\u5426\u5219\u4e3a\u96f6\u3002\u8f93\u5165\u662f\u901a\u8fc7\u4f7f\u77e2\u91cf\u4e2d\u7684\u968f\u673a\u6570\u91cf\u7684\u5143\u7d20\u4e3a<span translate=no>_^_5_^_</span>\u6216\u800c\u751f\u6210<span translate=no>_^_6_^_</span>\u7684\u3002</p>\n",
|
||||
"<h3>Parity dataset</h3>\n": "<h3>\u5947\u5076\u6821\u9a8c\u6570\u636e</h3>\n",
|
||||
"<p> </p>\n": "<p></p>\n",
|
||||
"<p> Generate a sample</p>\n": "<p>\u751f\u6210\u6837\u672c</p>\n",
|
||||
|
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@ -1,4 +1,4 @@
|
||||
{
|
||||
"<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: Learning to Ponder</a></h1>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation of the paper <a href=\"https://papers.labml.ai/paper/2107.05407\">PonderNet: Learning to Ponder</a>.</p>\n<p>PonderNet adapts the computation based on the input. It changes the number of steps to take on a recurrent network based on the input. PonderNet learns this with end-to-end gradient descent. </p>\n": "<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: \u719f\u8003\u3059\u308b\u3053\u3068\u3092\u5b66\u3076</a></h1>\n<p>\u3053\u308c\u306f\u3001\u8ad6\u6587\u300c<a href=\"https://papers.labml.ai/paper/2107.05407\">PonderNet: \u719f\u8003\u3092\u5b66\u307c\u3046</a>\u300d<a href=\"https://pytorch.org\">\u3092PyTorch\u3067\u5b9f\u88c5\u3057\u305f\u3082\u306e\u3067\u3059</a>\u3002</p>\n<p>PonderNet \u306f\u5165\u529b\u306b\u57fa\u3065\u3044\u3066\u8a08\u7b97\u3092\u8abf\u6574\u3057\u307e\u3059\u3002\u5165\u529b\u306b\u57fa\u3065\u3044\u3066\u30ea\u30ab\u30ec\u30f3\u30c8\u30cd\u30c3\u30c8\u30ef\u30fc\u30af\u3067\u5b9f\u884c\u3059\u308b\u30b9\u30c6\u30c3\u30d7\u306e\u6570\u3092\u5909\u66f4\u3057\u307e\u3059\u3002PonderNet\u306f\u3053\u308c\u3092\u7aef\u304b\u3089\u7aef\u307e\u3067\u306e\u52fe\u914d\u964d\u4e0b\u6cd5\u3067\u5b66\u7fd2\u3057\u307e\u3059</p>\u3002\n",
|
||||
"<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: Learning to Ponder</a></h1>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation of the paper <a href=\"https://arxiv.org/abs/2107.05407\">PonderNet: Learning to Ponder</a>.</p>\n<p>PonderNet adapts the computation based on the input. It changes the number of steps to take on a recurrent network based on the input. PonderNet learns this with end-to-end gradient descent. </p>\n": "<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: \u719f\u8003\u3059\u308b\u3053\u3068\u3092\u5b66\u3076</a></h1>\n<p>\u3053\u308c\u306f\u3001\u8ad6\u6587\u300c<a href=\"https://arxiv.org/abs/2107.05407\">PonderNet: \u719f\u8003\u3092\u5b66\u307c\u3046</a>\u300d<a href=\"https://pytorch.org\">\u3092PyTorch\u3067\u5b9f\u88c5\u3057\u305f\u3082\u306e\u3067\u3059</a>\u3002</p>\n<p>PonderNet \u306f\u5165\u529b\u306b\u57fa\u3065\u3044\u3066\u8a08\u7b97\u3092\u8abf\u6574\u3057\u307e\u3059\u3002\u5165\u529b\u306b\u57fa\u3065\u3044\u3066\u30ea\u30ab\u30ec\u30f3\u30c8\u30cd\u30c3\u30c8\u30ef\u30fc\u30af\u3067\u5b9f\u884c\u3059\u308b\u30b9\u30c6\u30c3\u30d7\u306e\u6570\u3092\u5909\u66f4\u3057\u307e\u3059\u3002PonderNet\u306f\u3053\u308c\u3092\u7aef\u304b\u3089\u7aef\u307e\u3067\u306e\u52fe\u914d\u964d\u4e0b\u6cd5\u3067\u5b66\u7fd2\u3057\u307e\u3059</p>\u3002\n",
|
||||
"PonderNet: Learning to Ponder": "PonderNet: \u719f\u8003\u3059\u308b\u3053\u3068\u3092\u5b66\u3076"
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
{
|
||||
"<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: Learning to Ponder</a></h1>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation of the paper <a href=\"https://papers.labml.ai/paper/2107.05407\">PonderNet: Learning to Ponder</a>.</p>\n<p>PonderNet adapts the computation based on the input. It changes the number of steps to take on a recurrent network based on the input. PonderNet learns this with end-to-end gradient descent. </p>\n": "<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">\u0db4\u0ddc\u0db1\u0dca\u0da9\u0dbb\u0dca\u0db1\u0dd9\u0da7\u0dca: \u0db8\u0dd9\u0db1\u0dd9\u0dc4\u0dd2 \u0d9a\u0dd2\u0dbb\u0dd3\u0db8\u0da7 \u0d89\u0d9c\u0dd9\u0db1\u0dd3\u0db8</a></h1>\n<p>\u0db8\u0dd9\u0dba <a href=\"https://papers.labml.ai/paper/2107.05407\">PonderNet \u0d9a\u0da9\u0daf\u0dcf\u0dc3\u0dd2 <a href=\"https://pytorch.org\">PyTorch</a> \u0d9a\u0dca\u0dbb\u0dd2\u0dba\u0dcf\u0dad\u0dca\u0db8\u0d9a \u0d9a\u0dd2\u0dbb\u0dd3\u0db8: \u0db4\u0ddc\u0db1\u0dca\u0da9\u0dbb\u0dca \u0dc0\u0dd9\u0dad \u0d89\u0d9c\u0dd9\u0db1\u0dd3\u0db8</a> . </p>\n<p>PonderNet\u0d86\u0daf\u0dcf\u0db1\u0dba \u0db8\u0dad \u0db4\u0daf\u0db1\u0db8\u0dca\u0dc0 \u0d9c\u0dab\u0db1\u0dba \u0d9a\u0dd2\u0dbb\u0dd3\u0db8 \u0d85\u0db1\u0dd4\u0dc0\u0dbb\u0dca\u0dad\u0db1\u0dba \u0d9a\u0dbb\u0dba\u0dd2. \u0d86\u0daf\u0dcf\u0db1\u0dba \u0db8\u0dad \u0db4\u0daf\u0db1\u0db8\u0dca\u0dc0 \u0db4\u0dd4\u0db1\u0dbb\u0dcf\u0dc0\u0dbb\u0dca\u0dad\u0db1 \u0da2\u0dcf\u0dbd\u0dba\u0d9a\u0dca \u0dc3\u0db3\u0dc4\u0dcf \u0d9c\u0dad \u0dba\u0dd4\u0dad\u0dd4 \u0db4\u0dd2\u0dba\u0dc0\u0dbb \u0d9c\u0dab\u0db1 \u0d91\u0dba \u0dc0\u0dd9\u0db1\u0dc3\u0dca \u0d9a\u0dbb\u0dba\u0dd2. \u0db4\u0ddc\u0db1\u0dca\u0da9\u0dbb\u0dca\u0db1\u0dd9\u0da7\u0dca \u0db8\u0dd9\u0dba \u0d89\u0d9c\u0dd9\u0db1 \u0d9c\u0db1\u0dca\u0db1\u0dda \u0d85\u0dc0\u0dc3\u0dcf\u0db1\u0dba \u0dc3\u0dd2\u0da7 \u0d85\u0dc0\u0dc3\u0dcf\u0db1\u0dba \u0daf\u0d9a\u0dca\u0dc0\u0dcf \u0dc0\u0dd6 \u0dc1\u0dca\u0dbb\u0dda\u0dab\u0dd2\u0dba\u0dda \u0dc3\u0db8\u0dca\u0db7\u0dc0\u0dba\u0d9a\u0dca \u0dc3\u0db8\u0d9f\u0dba. </p>\n",
|
||||
"<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: Learning to Ponder</a></h1>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation of the paper <a href=\"https://arxiv.org/abs/2107.05407\">PonderNet: Learning to Ponder</a>.</p>\n<p>PonderNet adapts the computation based on the input. It changes the number of steps to take on a recurrent network based on the input. PonderNet learns this with end-to-end gradient descent. </p>\n": "<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">\u0db4\u0ddc\u0db1\u0dca\u0da9\u0dbb\u0dca\u0db1\u0dd9\u0da7\u0dca: \u0db8\u0dd9\u0db1\u0dd9\u0dc4\u0dd2 \u0d9a\u0dd2\u0dbb\u0dd3\u0db8\u0da7 \u0d89\u0d9c\u0dd9\u0db1\u0dd3\u0db8</a></h1>\n<p>\u0db8\u0dd9\u0dba <a href=\"https://arxiv.org/abs/2107.05407\">PonderNet \u0d9a\u0da9\u0daf\u0dcf\u0dc3\u0dd2 <a href=\"https://pytorch.org\">PyTorch</a> \u0d9a\u0dca\u0dbb\u0dd2\u0dba\u0dcf\u0dad\u0dca\u0db8\u0d9a \u0d9a\u0dd2\u0dbb\u0dd3\u0db8: \u0db4\u0ddc\u0db1\u0dca\u0da9\u0dbb\u0dca \u0dc0\u0dd9\u0dad \u0d89\u0d9c\u0dd9\u0db1\u0dd3\u0db8</a> . </p>\n<p>PonderNet\u0d86\u0daf\u0dcf\u0db1\u0dba \u0db8\u0dad \u0db4\u0daf\u0db1\u0db8\u0dca\u0dc0 \u0d9c\u0dab\u0db1\u0dba \u0d9a\u0dd2\u0dbb\u0dd3\u0db8 \u0d85\u0db1\u0dd4\u0dc0\u0dbb\u0dca\u0dad\u0db1\u0dba \u0d9a\u0dbb\u0dba\u0dd2. \u0d86\u0daf\u0dcf\u0db1\u0dba \u0db8\u0dad \u0db4\u0daf\u0db1\u0db8\u0dca\u0dc0 \u0db4\u0dd4\u0db1\u0dbb\u0dcf\u0dc0\u0dbb\u0dca\u0dad\u0db1 \u0da2\u0dcf\u0dbd\u0dba\u0d9a\u0dca \u0dc3\u0db3\u0dc4\u0dcf \u0d9c\u0dad \u0dba\u0dd4\u0dad\u0dd4 \u0db4\u0dd2\u0dba\u0dc0\u0dbb \u0d9c\u0dab\u0db1 \u0d91\u0dba \u0dc0\u0dd9\u0db1\u0dc3\u0dca \u0d9a\u0dbb\u0dba\u0dd2. \u0db4\u0ddc\u0db1\u0dca\u0da9\u0dbb\u0dca\u0db1\u0dd9\u0da7\u0dca \u0db8\u0dd9\u0dba \u0d89\u0d9c\u0dd9\u0db1 \u0d9c\u0db1\u0dca\u0db1\u0dda \u0d85\u0dc0\u0dc3\u0dcf\u0db1\u0dba \u0dc3\u0dd2\u0da7 \u0d85\u0dc0\u0dc3\u0dcf\u0db1\u0dba \u0daf\u0d9a\u0dca\u0dc0\u0dcf \u0dc0\u0dd6 \u0dc1\u0dca\u0dbb\u0dda\u0dab\u0dd2\u0dba\u0dda \u0dc3\u0db8\u0dca\u0db7\u0dc0\u0dba\u0d9a\u0dca \u0dc3\u0db8\u0d9f\u0dba. </p>\n",
|
||||
"PonderNet: Learning to Ponder": "\u0db4\u0ddc\u0db1\u0dca\u0da9\u0dbb\u0dca\u0db1\u0dd9\u0da7\u0dca: \u0db8\u0dd9\u0db1\u0dd9\u0dc4\u0dd2 \u0d9a\u0dd2\u0dbb\u0dd3\u0db8\u0da7 \u0d89\u0d9c\u0dd9\u0db1\u0dd3\u0db8"
|
||||
}
|
@ -1,4 +1,4 @@
|
||||
{
|
||||
"<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: Learning to Ponder</a></h1>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation of the paper <a href=\"https://papers.labml.ai/paper/2107.05407\">PonderNet: Learning to Ponder</a>.</p>\n<p>PonderNet adapts the computation based on the input. It changes the number of steps to take on a recurrent network based on the input. PonderNet learns this with end-to-end gradient descent. </p>\n": "<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet\uff1a\u5b66\u4f1a\u601d\u8003</a></h1>\n<p>\u8fd9\u662f <a href=\"https://pytorch.org\">P <a href=\"https://papers.labml.ai/paper/2107.05407\">onderNet\uff1a\u5b66\u4f1a\u601d\u8003</a>\u8bba\u6587\u7684 PyTorch</a> \u5b9e\u73b0\u3002</p>\n<p>PonderNet \u6839\u636e\u8f93\u5165\u8c03\u6574\u8ba1\u7b97\u3002\u5b83\u4f1a\u6839\u636e\u8f93\u5165\u66f4\u6539\u5faa\u73af\u7f51\u7edc\u4e0a\u8981\u6267\u884c\u7684\u6b65\u9aa4\u6570\u3002PonderNet \u901a\u8fc7\u7aef\u5230\u7aef\u68af\u5ea6\u4e0b\u964d\u6765\u5b66\u4e60\u8fd9\u4e00\u70b9\u3002</p>\n",
|
||||
"<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet: Learning to Ponder</a></h1>\n<p>This is a <a href=\"https://pytorch.org\">PyTorch</a> implementation of the paper <a href=\"https://arxiv.org/abs/2107.05407\">PonderNet: Learning to Ponder</a>.</p>\n<p>PonderNet adapts the computation based on the input. It changes the number of steps to take on a recurrent network based on the input. PonderNet learns this with end-to-end gradient descent. </p>\n": "<h1><a href=\"https://nn.labml.ai/adaptive_computation/ponder_net/index.html\">PonderNet\uff1a\u5b66\u4f1a\u601d\u8003</a></h1>\n<p>\u8fd9\u662f <a href=\"https://pytorch.org\">P <a href=\"https://arxiv.org/abs/2107.05407\">onderNet\uff1a\u5b66\u4f1a\u601d\u8003</a>\u8bba\u6587\u7684 PyTorch</a> \u5b9e\u73b0\u3002</p>\n<p>PonderNet \u6839\u636e\u8f93\u5165\u8c03\u6574\u8ba1\u7b97\u3002\u5b83\u4f1a\u6839\u636e\u8f93\u5165\u66f4\u6539\u5faa\u73af\u7f51\u7edc\u4e0a\u8981\u6267\u884c\u7684\u6b65\u9aa4\u6570\u3002PonderNet \u901a\u8fc7\u7aef\u5230\u7aef\u68af\u5ea6\u4e0b\u964d\u6765\u5b66\u4e60\u8fd9\u4e00\u70b9\u3002</p>\n",
|
||||
"PonderNet: Learning to Ponder": "PonderNet\uff1a\u5b66\u4f1a\u601d\u8003"
|
||||
}
|
Reference in New Issue
Block a user