mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-06 15:22:21 +08:00
links
This commit is contained in:
@ -110,6 +110,11 @@ implementations.</p>
|
|||||||
<li><a href="gan/stylegan/index.html">StyleGAN 2</a></li>
|
<li><a href="gan/stylegan/index.html">StyleGAN 2</a></li>
|
||||||
</ul>
|
</ul>
|
||||||
<h4>✨ <a href="sketch_rnn/index.html">Sketch RNN</a></h4>
|
<h4>✨ <a href="sketch_rnn/index.html">Sketch RNN</a></h4>
|
||||||
|
<h4>✨ <a href="cfr/index.html">Counterfactual Regret Minimization (CFR)</a></h4>
|
||||||
|
<p>Solving games with incomplete information such as poker with CFR.</p>
|
||||||
|
<ul>
|
||||||
|
<li><a href="cfr/kuhn/index.html">Kuhn Poker</a></li>
|
||||||
|
</ul>
|
||||||
<h4>✨ <a href="rl/index.html">Reinforcement Learning</a></h4>
|
<h4>✨ <a href="rl/index.html">Reinforcement Learning</a></h4>
|
||||||
<ul>
|
<ul>
|
||||||
<li><a href="rl/ppo/index.html">Proximal Policy Optimization</a> with
|
<li><a href="rl/ppo/index.html">Proximal Policy Optimization</a> with
|
||||||
|
@ -50,6 +50,12 @@ implementations.
|
|||||||
|
|
||||||
#### ✨ [Sketch RNN](sketch_rnn/index.html)
|
#### ✨ [Sketch RNN](sketch_rnn/index.html)
|
||||||
|
|
||||||
|
#### ✨ [Counterfactual Regret Minimization (CFR)](cfr/index.html)
|
||||||
|
|
||||||
|
Solving games with incomplete information such as poker with CFR.
|
||||||
|
|
||||||
|
* [Kuhn Poker](cfr/kuhn/index.html)
|
||||||
|
|
||||||
#### ✨ [Reinforcement Learning](rl/index.html)
|
#### ✨ [Reinforcement Learning](rl/index.html)
|
||||||
* [Proximal Policy Optimization](rl/ppo/index.html) with
|
* [Proximal Policy Optimization](rl/ppo/index.html) with
|
||||||
[Generalized Advantage Estimation](rl/ppo/gae.html)
|
[Generalized Advantage Estimation](rl/ppo/gae.html)
|
||||||
|
@ -56,6 +56,12 @@ implementations almost weekly.
|
|||||||
|
|
||||||
#### ✨ [Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html)
|
#### ✨ [Sketch RNN](https://nn.labml.ai/sketch_rnn/index.html)
|
||||||
|
|
||||||
|
#### ✨ [Counterfactual Regret Minimization (CFR)](https://nn.labml.ai/cfr/index.html)
|
||||||
|
|
||||||
|
Solving games with incomplete information such as poker with CFR.
|
||||||
|
|
||||||
|
* [Kuhn Poker](https://nn.labml.ai/cfr/kuhn/index.html)
|
||||||
|
|
||||||
#### ✨ [Reinforcement Learning](https://nn.labml.ai/rl/index.html)
|
#### ✨ [Reinforcement Learning](https://nn.labml.ai/rl/index.html)
|
||||||
* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with
|
* [Proximal Policy Optimization](https://nn.labml.ai/rl/ppo/index.html) with
|
||||||
[Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html)
|
[Generalized Advantage Estimation](https://nn.labml.ai/rl/ppo/gae.html)
|
||||||
|
Reference in New Issue
Block a user