mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-11-04 06:16:05 +08:00 
			
		
		
		
	no loss smoothing
This commit is contained in:
		@ -49,8 +49,8 @@ class NLPAutoRegressionConfigs(TrainValidConfigs):
 | 
				
			|||||||
    d_model: int = 512
 | 
					    d_model: int = 512
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    def init(self):
 | 
					    def init(self):
 | 
				
			||||||
        tracker.set_queue("loss.*", 20, True)
 | 
					 | 
				
			||||||
        tracker.set_scalar("accuracy.*", True)
 | 
					        tracker.set_scalar("accuracy.*", True)
 | 
				
			||||||
 | 
					        tracker.set_scalar("loss.*", True)
 | 
				
			||||||
        hook_model_outputs(self.mode, self.model, 'model')
 | 
					        hook_model_outputs(self.mode, self.model, 'model')
 | 
				
			||||||
        self.state_modules = [self.accuracy]
 | 
					        self.state_modules = [self.accuracy]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
@ -22,7 +22,6 @@ Where $1 \leq 2i, 2i + 1 \leq d_{model}$
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
import math
 | 
					import math
 | 
				
			||||||
 | 
					
 | 
				
			||||||
import matplotlib.pyplot as plt
 | 
					 | 
				
			||||||
import numpy as np
 | 
					import numpy as np
 | 
				
			||||||
import torch
 | 
					import torch
 | 
				
			||||||
import torch.nn as nn
 | 
					import torch.nn as nn
 | 
				
			||||||
@ -65,6 +64,8 @@ def get_positional_encoding(d_model: int, max_len: int = 5000):
 | 
				
			|||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def _test_positional_encoding():
 | 
					def _test_positional_encoding():
 | 
				
			||||||
 | 
					    import matplotlib.pyplot as plt
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    plt.figure(figsize=(15, 5))
 | 
					    plt.figure(figsize=(15, 5))
 | 
				
			||||||
    pe = get_positional_encoding(20, 100)
 | 
					    pe = get_positional_encoding(20, 100)
 | 
				
			||||||
    plt.plot(np.arange(100), pe[:, 0, 4:8].numpy())
 | 
					    plt.plot(np.arange(100), pe[:, 0, 4:8].numpy())
 | 
				
			||||||
 | 
				
			|||||||
		Reference in New Issue
	
	Block a user