From d6989dc616ca2037393677cbd3cc12e67851eef2 Mon Sep 17 00:00:00 2001 From: Varuna Jayasiri Date: Wed, 2 Dec 2020 14:43:27 +0530 Subject: [PATCH] optimizers --- labml_nn/optimizers/__init__.py | 0 labml_nn/optimizers/ada_belief/__init__.py | 175 ++++++++++++++ labml_nn/optimizers/ada_belief/mnist.py | 111 +++++++++ labml_nn/optimizers/radam/__init__.py | 254 +++++++++++++++++++++ 4 files changed, 540 insertions(+) create mode 100644 labml_nn/optimizers/__init__.py create mode 100644 labml_nn/optimizers/ada_belief/__init__.py create mode 100644 labml_nn/optimizers/ada_belief/mnist.py create mode 100644 labml_nn/optimizers/radam/__init__.py diff --git a/labml_nn/optimizers/__init__.py b/labml_nn/optimizers/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/labml_nn/optimizers/ada_belief/__init__.py b/labml_nn/optimizers/ada_belief/__init__.py new file mode 100644 index 00000000..bfca0d20 --- /dev/null +++ b/labml_nn/optimizers/ada_belief/__init__.py @@ -0,0 +1,175 @@ +""" +This is forked from AdaBelief official implementation +https://github.com/juntang-zhuang/Adabelief-Optimizer +""" +import math + +import torch +from torch.optim.optimizer import Optimizer + + +class AdaBelief(Optimizer): + r"""Implements AdaBelief algorithm. Modified from Adam in PyTorch + Arguments: + params (iterable): iterable of parameters to optimize or dicts defining + parameter groups + lr (float, optional): learning rate (default: 1e-3) + betas (Tuple[float, float], optional): coefficients used for computing + running averages of gradient and its square (default: (0.9, 0.999)) + eps (float, optional): term added to the denominator to improve + numerical stability (default: 1e-16) + weight_decay (float, optional): weight decay (L2 penalty) (default: 0) + amsgrad (boolean, optional): whether to use the AMSGrad variant of this + algorithm from the paper `On the Convergence of Adam and Beyond`_ + (default: False) + weight_decouple (boolean, optional): ( default: True) If set as True, then + the optimizer uses decoupled weight decay as in AdamW + fixed_decay (boolean, optional): (default: False) This is used when weight_decouple + is set as True. + When fixed_decay == True, the weight decay is performed as + $W_{new} = W_{old} - W_{old} \times decay$. + When fixed_decay == False, the weight decay is performed as + $W_{new} = W_{old} - W_{old} \times decay \times lr$. Note that in this case, the + weight decay ratio decreases with learning rate (lr). + rectify (boolean, optional): (default: True) If set as True, then perform the rectified + update similar to RAdam + degenerated_to_sgd (boolean, optional) (default:True) If set as True, then perform SGD update + when variance of gradient is high + reference: AdaBelief Optimizer, adapting stepsizes by the belief in observed gradients, NeurIPS 2020 + """ + + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16, + weight_decay=0, amsgrad=False, weight_decouple=True, fixed_decay=False, rectify=True, + degenerated_to_sgd=True): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + if not 0.0 <= weight_decay: + raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) + + if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): + for param in params: + if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): + param['buffer'] = [[None, None, None] for _ in range(10)] + + defaults = dict(lr=lr, betas=betas, eps=eps, + weight_decay=weight_decay, amsgrad=amsgrad, + buffer=[[None, None, None] for _ in range(10)]) + super().__init__(params, defaults) + + self.degenerated_to_sgd = degenerated_to_sgd + self.weight_decouple = weight_decouple + self.rectify = rectify + self.fixed_decay = fixed_decay + + def __setstate__(self, state): + super().__setstate__(state) + for group in self.param_groups: + group.setdefault('amsgrad', False) + + @torch.no_grad() + def step(self, closure=None): + """Performs a single optimization step. + Arguments: + closure (callable, optional): A closure that reevaluates the model + and returns the loss. + """ + loss = None + if closure is not None: + with torch.enable_grad(): + loss = closure() + + for group in self.param_groups: + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.data + if grad.is_sparse: + raise RuntimeError('AdaBelief does not support sparse gradients,' + ' please consider SparseAdam instead') + + state = self.state[p] + # Lazy state initialization + if len(state) == 0: + state['step'] = 0 + # Exponential moving average of gradient values + state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format) + # Exponential moving average of squared gradient values + state['exp_avg_var'] = torch.zeros_like(p, memory_format=torch.preserve_format) + if group['amsgrad']: + # Maintains max of all exp. moving avg. of sq. grad. values + state['max_exp_avg_var'] = torch.zeros_like(p, memory_format=torch.preserve_format) + + beta1, beta2 = group['betas'] + + # get current state variable + exp_avg, exp_avg_var = state['exp_avg'], state['exp_avg_var'] + + state['step'] += 1 + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + + # Update first and second moment running average + exp_avg.mul_(beta1).add_(grad, alpha=1 - beta1) + grad_residual = grad - exp_avg + exp_avg_var.mul_(beta2).addcmul_(grad_residual, grad_residual, value=1 - beta2) + + if group['amsgrad']: + max_exp_avg_var = state['max_exp_avg_var'] + # Maintains the maximum of all 2nd moment running avg. till now + torch.max(max_exp_avg_var, exp_avg_var, out=max_exp_avg_var) + + # Use the max. for normalizing running avg. of gradient + denom = ((max_exp_avg_var + group['eps']).sqrt_() / math.sqrt(bias_correction2)).add_(group['eps']) + else: + denom = (exp_avg_var.add_(group['eps']).sqrt() / math.sqrt(bias_correction2)).add_(group['eps']) + + # perform weight decay, check if decoupled weight decay + if self.weight_decouple: + if not self.fixed_decay: + p.data.mul_(1.0 - group['lr'] * group['weight_decay']) + else: + p.data.mul_(1.0 - group['weight_decay']) + else: + if group['weight_decay'] != 0: + grad.add_(p.data, alpha=group['weight_decay']) + + # update + if not self.rectify: + # Default update + step_size = group['lr'] / bias_correction1 + p.data.addcdiv_(exp_avg, denom, value=-step_size) + else: # Rectified update, forked from RAdam + buffered = group['buffer'][int(state['step'] % 10)] + if state['step'] == buffered[0]: + N_sma, step_size = buffered[1], buffered[2] + else: + buffered[0] = state['step'] + beta2_t = beta2 ** state['step'] + N_sma_max = 2 / (1 - beta2) - 1 + N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) + buffered[1] = N_sma + + # more conservative since it's an approximated value + if N_sma >= 5: + step_size = math.sqrt( + (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( + N_sma_max - 2)) / (1 - beta1 ** state['step']) + elif self.degenerated_to_sgd: + step_size = 1.0 / (1 - beta1 ** state['step']) + else: + step_size = -1 + buffered[2] = step_size + + if N_sma >= 5: + denom = exp_avg_var.sqrt().add_(group['eps']) + p.data.addcdiv_(exp_avg, denom, value=-step_size * group['lr']) + elif step_size > 0: + p.data.add_(exp_avg, alpha=-step_size * group['lr']) + + return loss diff --git a/labml_nn/optimizers/ada_belief/mnist.py b/labml_nn/optimizers/ada_belief/mnist.py new file mode 100644 index 00000000..19bbd176 --- /dev/null +++ b/labml_nn/optimizers/ada_belief/mnist.py @@ -0,0 +1,111 @@ +import torch.nn as nn +import torch.nn.functional as F +import torch.utils.data + +from labml import experiment, tracker +from labml.configs import option +from labml_helpers.datasets.mnist import MNISTConfigs +from labml_helpers.device import DeviceConfigs +from labml_helpers.metrics.accuracy import Accuracy +from labml_helpers.module import Module +from labml_helpers.optimizer import OptimizerConfigs +from labml_helpers.seed import SeedConfigs +from labml_helpers.train_valid import TrainValidConfigs, BatchIndex, hook_model_outputs + + +class Net(Module): + def __init__(self): + super().__init__() + self.conv1 = nn.Conv2d(1, 20, 5, 1) + self.conv2 = nn.Conv2d(20, 50, 5, 1) + self.fc1 = nn.Linear(4 * 4 * 50, 500) + self.fc2 = nn.Linear(500, 10) + + def __call__(self, x: torch.Tensor): + x = F.relu(self.conv1(x)) + x = F.max_pool2d(x, 2, 2) + x = F.relu(self.conv2(x)) + x = F.max_pool2d(x, 2, 2) + x = x.view(-1, 4 * 4 * 50) + x = F.relu(self.fc1(x)) + return self.fc2(x) + + +class Configs(MNISTConfigs, TrainValidConfigs): + optimizer: torch.optim.Adam + model: nn.Module + set_seed = SeedConfigs() + device: torch.device = DeviceConfigs() + epochs: int = 10 + + is_save_models = True + model: nn.Module + inner_iterations = 10 + + accuracy_func = Accuracy() + loss_func = nn.CrossEntropyLoss() + + def init(self): + tracker.set_queue("loss.*", 20, True) + tracker.set_scalar("accuracy.*", True) + hook_model_outputs(self.mode, self.model, 'model') + self.state_modules = [self.accuracy_func] + + def step(self, batch: any, batch_idx: BatchIndex): + data, target = batch[0].to(self.device), batch[1].to(self.device) + + if self.mode.is_train: + tracker.add_global_step(len(data)) + + with self.mode.update(is_log_activations=batch_idx.is_last): + output = self.model(data) + + loss = self.loss_func(output, target) + self.accuracy_func(output, target) + tracker.add("loss.", loss) + + if self.mode.is_train: + loss.backward() + + self.optimizer.step() + if batch_idx.is_last: + tracker.add('model', self.model) + tracker.add('optimizer', (self.optimizer, {'model': self.model})) + self.optimizer.zero_grad() + + tracker.save() + + +@option(Configs.model) +def model(c: Configs): + return Net().to(c.device) + + +@option(OptimizerConfigs.optimizer, 'AdaBelief') +def ada_belief(c: OptimizerConfigs): + from labml_nn.optimizers.ada_belief import AdaBelief + return AdaBelief(c.parameters, lr=c.learning_rate, betas=c.betas, eps=c.eps) + + +@option(Configs.optimizer) +def _optimizer(c: Configs): + opt_conf = OptimizerConfigs() + opt_conf.parameters = c.model.parameters() + return opt_conf + + +def main(): + conf = Configs() + conf.inner_iterations = 10 + experiment.create(name='mnist_ada_belief') + experiment.configs(conf, {'inner_iterations': 10, + 'optimizer.optimizer': 'AdaBelief', + 'optimizer.learning_rate': 1.5e-4}) + conf.set_seed.set() + experiment.add_pytorch_models(dict(model=conf.model)) + with experiment.start(): + conf.run() + + +if __name__ == '__main__': + main() diff --git a/labml_nn/optimizers/radam/__init__.py b/labml_nn/optimizers/radam/__init__.py new file mode 100644 index 00000000..ffdefecb --- /dev/null +++ b/labml_nn/optimizers/radam/__init__.py @@ -0,0 +1,254 @@ +""" +Forked from https://github.com/LiyuanLucasLiu/RAdam +""" + +import math +import torch +from torch.optim.optimizer import Optimizer + + +class RAdam(Optimizer): + + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + + self.degenerated_to_sgd = degenerated_to_sgd + if isinstance(params, (list, tuple)) and len(params) > 0 and isinstance(params[0], dict): + for param in params: + if 'betas' in param and (param['betas'][0] != betas[0] or param['betas'][1] != betas[1]): + param['buffer'] = [[None, None, None] for _ in range(10)] + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, + buffer=[[None, None, None] for _ in range(10)]) + super(RAdam, self).__init__(params, defaults) + + def __setstate__(self, state): + super(RAdam, self).__setstate__(state) + + def step(self, closure=None): + + loss = None + if closure is not None: + loss = closure() + + for group in self.param_groups: + + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.data.float() + if grad.is_sparse: + raise RuntimeError('RAdam does not support sparse gradients') + + p_data_fp32 = p.data.float() + + state = self.state[p] + + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p_data_fp32) + state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) + else: + state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) + state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + beta1, beta2 = group['betas'] + + exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) + exp_avg.mul_(beta1).add_(1 - beta1, grad) + + state['step'] += 1 + buffered = group['buffer'][int(state['step'] % 10)] + if state['step'] == buffered[0]: + N_sma, step_size = buffered[1], buffered[2] + else: + buffered[0] = state['step'] + beta2_t = beta2 ** state['step'] + N_sma_max = 2 / (1 - beta2) - 1 + N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) + buffered[1] = N_sma + + # more conservative since it's an approximated value + if N_sma >= 5: + step_size = math.sqrt( + (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( + N_sma_max - 2)) / (1 - beta1 ** state['step']) + elif self.degenerated_to_sgd: + step_size = 1.0 / (1 - beta1 ** state['step']) + else: + step_size = -1 + buffered[2] = step_size + + # more conservative since it's an approximated value + if N_sma >= 5: + if group['weight_decay'] != 0: + p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) + denom = exp_avg_sq.sqrt().add_(group['eps']) + p_data_fp32.addcdiv_(-step_size * group['lr'], exp_avg, denom) + p.data.copy_(p_data_fp32) + elif step_size > 0: + if group['weight_decay'] != 0: + p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) + p_data_fp32.add_(-step_size * group['lr'], exp_avg) + p.data.copy_(p_data_fp32) + + return loss + + +class PlainRAdam(Optimizer): + + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, degenerated_to_sgd=True): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + + self.degenerated_to_sgd = degenerated_to_sgd + defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay) + + super(PlainRAdam, self).__init__(params, defaults) + + def __setstate__(self, state): + super(PlainRAdam, self).__setstate__(state) + + def step(self, closure=None): + + loss = None + if closure is not None: + loss = closure() + + for group in self.param_groups: + + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.data.float() + if grad.is_sparse: + raise RuntimeError('RAdam does not support sparse gradients') + + p_data_fp32 = p.data.float() + + state = self.state[p] + + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p_data_fp32) + state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) + else: + state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) + state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + beta1, beta2 = group['betas'] + + exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) + exp_avg.mul_(beta1).add_(1 - beta1, grad) + + state['step'] += 1 + beta2_t = beta2 ** state['step'] + N_sma_max = 2 / (1 - beta2) - 1 + N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 - beta2_t) + + # more conservative since it's an approximated value + if N_sma >= 5: + if group['weight_decay'] != 0: + p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) + step_size = group['lr'] * math.sqrt( + (1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) * (N_sma - 2) / N_sma * N_sma_max / ( + N_sma_max - 2)) / (1 - beta1 ** state['step']) + denom = exp_avg_sq.sqrt().add_(group['eps']) + p_data_fp32.addcdiv_(-step_size, exp_avg, denom) + p.data.copy_(p_data_fp32) + elif self.degenerated_to_sgd: + if group['weight_decay'] != 0: + p_data_fp32.add_(-group['weight_decay'] * group['lr'], p_data_fp32) + step_size = group['lr'] / (1 - beta1 ** state['step']) + p_data_fp32.add_(-step_size, exp_avg) + p.data.copy_(p_data_fp32) + + return loss + + +class AdamW(Optimizer): + + def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=0, warmup=0): + if not 0.0 <= lr: + raise ValueError("Invalid learning rate: {}".format(lr)) + if not 0.0 <= eps: + raise ValueError("Invalid epsilon value: {}".format(eps)) + if not 0.0 <= betas[0] < 1.0: + raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) + if not 0.0 <= betas[1] < 1.0: + raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) + + defaults = dict(lr=lr, betas=betas, eps=eps, + weight_decay=weight_decay, warmup=warmup) + super(AdamW, self).__init__(params, defaults) + + def __setstate__(self, state): + super(AdamW, self).__setstate__(state) + + def step(self, closure=None): + loss = None + if closure is not None: + loss = closure() + + for group in self.param_groups: + + for p in group['params']: + if p.grad is None: + continue + grad = p.grad.data.float() + if grad.is_sparse: + raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') + + p_data_fp32 = p.data.float() + + state = self.state[p] + + if len(state) == 0: + state['step'] = 0 + state['exp_avg'] = torch.zeros_like(p_data_fp32) + state['exp_avg_sq'] = torch.zeros_like(p_data_fp32) + else: + state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32) + state['exp_avg_sq'] = state['exp_avg_sq'].type_as(p_data_fp32) + + exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] + beta1, beta2 = group['betas'] + + state['step'] += 1 + + exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) + exp_avg.mul_(beta1).add_(1 - beta1, grad) + + denom = exp_avg_sq.sqrt().add_(group['eps']) + bias_correction1 = 1 - beta1 ** state['step'] + bias_correction2 = 1 - beta2 ** state['step'] + + if group['warmup'] > state['step']: + scheduled_lr = 1e-8 + state['step'] * group['lr'] / group['warmup'] + else: + scheduled_lr = group['lr'] + + step_size = scheduled_lr * math.sqrt(bias_correction2) / bias_correction1 + + if group['weight_decay'] != 0: + p_data_fp32.add_(-group['weight_decay'] * scheduled_lr, p_data_fp32) + + p_data_fp32.addcdiv_(-step_size, exp_avg, denom) + + p.data.copy_(p_data_fp32) + + return loss