This commit is contained in:
Varuna Jayasiri
2021-10-21 15:01:58 +05:30
parent d0c6b369fe
commit c5b13162cf
191 changed files with 908 additions and 80050 deletions

View File

@ -1,383 +0,0 @@
<!DOCTYPE html>
<html>
<head>
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
<meta name="description" content="Documented implementation with explanations of Attention with Linear Biases (ALiBi)"/>
<meta name="twitter:card" content="summary"/>
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta name="twitter:title" content="Attention with Linear Biases (ALiBi)"/>
<meta name="twitter:description" content="Documented implementation with explanations of Attention with Linear Biases (ALiBi)"/>
<meta name="twitter:site" content="@labmlai"/>
<meta name="twitter:creator" content="@labmlai"/>
<meta property="og:url" content="https://nn.labml.ai/transformers/alibi/index.html"/>
<meta property="og:title" content="Attention with Linear Biases (ALiBi)"/>
<meta property="og:image" content="https://avatars1.githubusercontent.com/u/64068543?s=400&amp;v=4"/>
<meta property="og:site_name" content="LabML Neural Networks"/>
<meta property="og:type" content="object"/>
<meta property="og:title" content="Attention with Linear Biases (ALiBi)"/>
<meta property="og:description" content="Documented implementation with explanations of Attention with Linear Biases (ALiBi)"/>
<title>Attention with Linear Biases (ALiBi)</title>
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/transformers/alibi/index.html"/>
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag() {
dataLayer.push(arguments);
}
gtag('js', new Date());
gtag('config', 'G-4V3HC8HBLH');
</script>
</head>
<body>
<div id='container'>
<div id="background"></div>
<div class='section'>
<div class='docs'>
<p>
<a class="parent" href="/">home</a>
<a class="parent" href="../index.html">transformers</a>
<a class="parent" href="index.html">alibi</a>
</p>
<p>
<a href="https://github.com/labmlai/annotated_deep_learning_paper_implementations/tree/master/labml_nn/transformers/alibi/__init__.py">
<img alt="Github"
src="https://img.shields.io/github/stars/labmlai/annotated_deep_learning_paper_implementations?style=social"
style="max-width:100%;"/></a>
<a href="https://twitter.com/labmlai"
rel="nofollow">
<img alt="Twitter"
src="https://img.shields.io/twitter/follow/labmlai?style=social"
style="max-width:100%;"/></a>
</p>
</div>
</div>
<div class='section' id='section-0'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-0'>#</a>
</div>
<h1>Attention with Linear Biases (ALiBi)</h1>
<p>This is an implementation of Attention with Linear Biases (ALiBi) from the paper
Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation
<a href="https://ofir.io/train_short_test_long.pdf">(pdf)</a>.</p>
<p>This replaces positional encodings with biases added to attention scores (attention logits, before the softmax).
This is a relative scheme tested on autoregressive tasks, and the bias is higher for closeby tokens
and lower for far-away tokens.
The biases decrease linearly in the log scale (because it&rsquo;s before the softmax) and each head has a different slope.</p>
<p>Here&rsquo;s the attention formula for $i$-th token,</p>
<p>
<script type="math/tex; mode=display">\begin{align}
\mathbf{a}_i
&= \text{softmax} \bigg( \mathbf{q}_i \mathbf{K}^\top + m \cdot \big[-(i-1), \dots, 1, 0 \big] \bigg) \\
&= \text{softmax} \bigg( \mathbf{q}_i \mathbf{K}^\top + m \cdot \big[0, 1, \dots, (i - 1) \big] \bigg)
\end{align}</script>
</p>
<p>where $\mathbf{q}_i \in \mathbb{R}^d$ is the query of the $i$-th token, $K \in \mathbb{R}^{i \times d}$ are the keys
up to $i$, and $d$ the number of features per head.
Note that the above equality halts because $\text{softmax}$ is invariant to translations
(you can add any constant to all elements without changing the result).</p>
<p>Here is <a href="experiment.html">the training code</a> for a ALiBi model.</p>
<p><a href="https://app.labml.ai/run/e87bec2a074911ec82cdd1759f10c925"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">36</span><span></span><span class="kn">import</span> <span class="nn">math</span>
<span class="lineno">37</span>
<span class="lineno">38</span><span class="kn">import</span> <span class="nn">torch</span>
<span class="lineno">39</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
<span class="lineno">40</span>
<span class="lineno">41</span><span class="kn">from</span> <span class="nn">labml.logger</span> <span class="kn">import</span> <span class="n">inspect</span>
<span class="lineno">42</span><span class="kn">from</span> <span class="nn">labml_nn.transformers.mha</span> <span class="kn">import</span> <span class="n">MultiHeadAttention</span></pre></div>
</div>
</div>
<div class='section' id='section-1'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<h2>Get head-specific slope $m$ for each head</h2>
<ul>
<li><code>n_heads</code> is the number of heads in the attention layer $n$</li>
</ul>
<p>The slope for first head is</p>
<p>
<script type="math/tex; mode=display">2^{-2^{-(\log_2 n) - 3}}</script>
</p>
<p>The slopes for the rest of the heads are in a geometric series with a ratio same as above.</p>
<p>For instance when the number of heads is $8$ the slopes are
<script type="math/tex; mode=display">\frac{1}{2^1}, \frac{1}{2^2}, \dots, \frac{1}{2^8}</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span><span class="k">def</span> <span class="nf">get_slopes</span><span class="p">(</span><span class="n">n_heads</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-2'>
<div class='docs'>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>
<script type="math/tex; mode=display">2^{-2^{-(\log_2 n) - 3}}</script>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">62</span> <span class="n">s</span> <span class="o">=</span> <span class="p">(</span><span class="mi">2</span> <span class="o">**</span> <span class="p">(</span><span class="o">-</span><span class="mi">2</span> <span class="o">**</span> <span class="o">-</span><span class="p">(</span><span class="n">math</span><span class="o">.</span><span class="n">log2</span><span class="p">(</span><span class="n">n_heads</span><span class="p">)</span> <span class="o">-</span> <span class="mi">3</span><span class="p">)))</span></pre></div>
</div>
</div>
<div class='section' id='section-3'>
<div class='docs'>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>The geometric sequence</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">64</span> <span class="k">return</span> <span class="p">[</span><span class="n">s</span> <span class="o">*</span> <span class="p">(</span><span class="n">s</span> <span class="o">**</span> <span class="n">i</span><span class="p">)</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">n_heads</span><span class="p">)]</span></pre></div>
</div>
</div>
<div class='section' id='section-4'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<h2>Calculate the attention biases matrix</h2>
<ul>
<li><code>n_heads</code> is the number of heads in the attention layer</li>
<li><code>max_len</code> is the maximum sequence length</li>
</ul>
<p>This returns a matrix of shape <code>[n_heads, max_len]</code> with attention biases.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">67</span><span class="k">def</span> <span class="nf">get_biases</span><span class="p">(</span><span class="n">n_heads</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">max_len</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-5'>
<div class='docs'>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Get slopes $m$ for each head</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">78</span> <span class="n">slopes</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">tensor</span><span class="p">(</span><span class="n">get_slopes</span><span class="p">(</span><span class="n">n_heads</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-6'>
<div class='docs'>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Calculate distances $[0, 1, \dots, N]$</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">80</span> <span class="n">distance</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">arange</span><span class="p">(</span><span class="n">max_len</span><span class="p">)</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">float</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-7'>
<div class='docs'>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Multiply them pair-wise to get the bias matrix</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">82</span> <span class="k">return</span> <span class="n">distance</span><span class="p">[:,</span> <span class="kc">None</span><span class="p">]</span> <span class="o">*</span> <span class="n">slopes</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:]</span></pre></div>
</div>
</div>
<div class='section' id='section-8'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<h2>Attention with Linear Biases (ALiBi)</h2>
<p>We override <a href="mha.html">Multi-Head Attention</a> module so we only need to
write the <code>get_scores</code> method.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">85</span><span class="k">class</span> <span class="nc">AlibiMultiHeadAttention</span><span class="p">(</span><span class="n">MultiHeadAttention</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-9'>
<div class='docs'>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">93</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">heads</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">dropout_prob</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span> <span class="n">max_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">5_000</span><span class="p">):</span>
<span class="lineno">94</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">(</span><span class="n">heads</span><span class="p">,</span> <span class="n">d_model</span><span class="p">,</span> <span class="n">dropout_prob</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-10'>
<div class='docs'>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Pre-calculate the biases</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">97</span> <span class="bp">self</span><span class="o">.</span><span class="n">bias</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">get_biases</span><span class="p">(</span><span class="n">heads</span><span class="p">,</span> <span class="n">max_len</span><span class="p">),</span> <span class="n">requires_grad</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-11'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<h3>Calculate attention scores and add attention biases</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">99</span> <span class="k">def</span> <span class="nf">get_scores</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">query</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">key</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
</div>
</div>
<div class='section' id='section-12'>
<div class='docs'>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Calculate the standard attention score.
It has shape <code>[query_seq_len, key_seq_len, batch_size, head]</code></p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">106</span> <span class="n">scores</span> <span class="o">=</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="n">get_scores</span><span class="p">(</span><span class="n">query</span><span class="p">,</span> <span class="n">key</span><span class="p">)</span></pre></div>
</div>
</div>
<div class='section' id='section-13'>
<div class='docs'>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>Number of keys</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">109</span> <span class="n">key_seq_len</span> <span class="o">=</span> <span class="n">scores</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span></pre></div>
</div>
</div>
<div class='section' id='section-14'>
<div class='docs'>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Add the biases to scores.</p>
<p>
<script type="math/tex; mode=display">\mathbf{q}_i \mathbf{K}^\top + m \cdot \big[0, 1, \dots, (i - 1) \big]</script>
</p>
<p>Note that we add biases for all keys (not just upto $i$). We can do this since
those extra entries will get removed because of the masking later.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">116</span> <span class="k">return</span> <span class="n">scores</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">bias</span><span class="p">[</span><span class="kc">None</span><span class="p">,</span> <span class="p">:</span><span class="n">key_seq_len</span><span class="p">,</span> <span class="kc">None</span><span class="p">,</span> <span class="p">:]</span></pre></div>
</div>
</div>
<div class='section' id='section-15'>
<div class='docs doc-strings'>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Simple test function to see the slopes.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">119</span><span class="k">def</span> <span class="nf">_test_slopes</span><span class="p">():</span></pre></div>
</div>
</div>
<div class='section' id='section-16'>
<div class='docs'>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">123</span> <span class="n">inspect</span><span class="p">(</span><span class="n">get_slopes</span><span class="p">(</span><span class="mi">8</span><span class="p">))</span>
<span class="lineno">124</span> <span class="n">inspect</span><span class="p">(</span><span class="n">get_slopes</span><span class="p">(</span><span class="mi">16</span><span class="p">))</span></pre></div>
</div>
</div>
<div class='section' id='section-17'>
<div class='docs'>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">128</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">&#39;__main__&#39;</span><span class="p">:</span>
<span class="lineno">129</span> <span class="n">_test_slopes</span><span class="p">()</span></pre></div>
</div>
</div>
<div class='footer'>
<a href="https://papers.labml.ai">Trending Research Papers</a>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')
console.log(images);
for (var i = 0; i < images.length; ++i) {
handleImage(images[i])
}
}
function handleImage(img) {
img.parentElement.style.textAlign = 'center'
var modal = document.createElement('div')
modal.id = 'modal'
var modalContent = document.createElement('div')
modal.appendChild(modalContent)
var modalImage = document.createElement('img')
modalContent.appendChild(modalImage)
var span = document.createElement('span')
span.classList.add('close')
span.textContent = 'x'
modal.appendChild(span)
img.onclick = function () {
console.log('clicked')
document.body.appendChild(modal)
modalImage.src = img.src
}
span.onclick = function () {
document.body.removeChild(modal)
}
}
handleImages()
</script>
</body>
</html>