mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-10-29 17:57:14 +08:00
cleanup
This commit is contained in:
@ -15,20 +15,20 @@ on an NLP auto-regression task (with Tiny Shakespeare dataset).
|
||||
"""
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from labml import experiment
|
||||
from labml.configs import option
|
||||
from labml_helpers.module import Module
|
||||
from labml_nn.experiments.nlp_autoregression import NLPAutoRegressionConfigs
|
||||
from labml_nn.transformers import TransformerConfigs, Encoder
|
||||
from labml_nn.transformers.utils import subsequent_mask
|
||||
|
||||
|
||||
class AutoregressiveTransformer(Module):
|
||||
class AutoregressiveTransformer(nn.Module):
|
||||
"""
|
||||
## Auto-Regressive model
|
||||
"""
|
||||
def __init__(self, encoder: Encoder, src_embed: Module, generator: Module):
|
||||
def __init__(self, encoder: Encoder, src_embed: nn.Module, generator: nn.Module):
|
||||
"""
|
||||
* `encoder` is the transformer [Encoder](../models.html#Encoder)
|
||||
* `src_embed` is the token
|
||||
|
||||
@ -26,13 +26,12 @@ import math
|
||||
from typing import Optional, List
|
||||
|
||||
import torch
|
||||
from torch import nn as nn
|
||||
from torch import nn
|
||||
|
||||
from labml import tracker
|
||||
from labml_helpers.module import Module
|
||||
|
||||
|
||||
class PrepareForMultiHeadAttention(Module):
|
||||
class PrepareForMultiHeadAttention(nn.Module):
|
||||
"""
|
||||
<a id="PrepareMHA"></a>
|
||||
|
||||
@ -68,7 +67,7 @@ class PrepareForMultiHeadAttention(Module):
|
||||
return x
|
||||
|
||||
|
||||
class MultiHeadAttention(Module):
|
||||
class MultiHeadAttention(nn.Module):
|
||||
r"""
|
||||
<a id="MHA"></a>
|
||||
|
||||
|
||||
@ -15,7 +15,6 @@ import math
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from labml_helpers.module import Module
|
||||
|
||||
from labml_nn.utils import clone_module_list
|
||||
from .feed_forward import FeedForward
|
||||
@ -23,7 +22,7 @@ from .mha import MultiHeadAttention
|
||||
from .positional_encoding import get_positional_encoding
|
||||
|
||||
|
||||
class EmbeddingsWithPositionalEncoding(Module):
|
||||
class EmbeddingsWithPositionalEncoding(nn.Module):
|
||||
"""
|
||||
<a id="EmbeddingsWithPositionalEncoding"></a>
|
||||
|
||||
@ -41,7 +40,7 @@ class EmbeddingsWithPositionalEncoding(Module):
|
||||
return self.linear(x) * math.sqrt(self.d_model) + pe
|
||||
|
||||
|
||||
class EmbeddingsWithLearnedPositionalEncoding(Module):
|
||||
class EmbeddingsWithLearnedPositionalEncoding(nn.Module):
|
||||
"""
|
||||
<a id="EmbeddingsWithLearnedPositionalEncoding"></a>
|
||||
|
||||
@ -59,7 +58,7 @@ class EmbeddingsWithLearnedPositionalEncoding(Module):
|
||||
return self.linear(x) * math.sqrt(self.d_model) + pe
|
||||
|
||||
|
||||
class TransformerLayer(Module):
|
||||
class TransformerLayer(nn.Module):
|
||||
"""
|
||||
<a id="TransformerLayer"></a>
|
||||
|
||||
@ -139,7 +138,7 @@ class TransformerLayer(Module):
|
||||
return x
|
||||
|
||||
|
||||
class Encoder(Module):
|
||||
class Encoder(nn.Module):
|
||||
"""
|
||||
<a id="Encoder"></a>
|
||||
|
||||
@ -161,7 +160,7 @@ class Encoder(Module):
|
||||
return self.norm(x)
|
||||
|
||||
|
||||
class Decoder(Module):
|
||||
class Decoder(nn.Module):
|
||||
"""
|
||||
<a id="Decoder"></a>
|
||||
|
||||
@ -183,7 +182,7 @@ class Decoder(Module):
|
||||
return self.norm(x)
|
||||
|
||||
|
||||
class Generator(Module):
|
||||
class Generator(nn.Module):
|
||||
"""
|
||||
<a id="Generator"></a>
|
||||
|
||||
@ -201,14 +200,14 @@ class Generator(Module):
|
||||
return self.projection(x)
|
||||
|
||||
|
||||
class EncoderDecoder(Module):
|
||||
class EncoderDecoder(nn.Module):
|
||||
"""
|
||||
<a id="EncoderDecoder"></a>
|
||||
|
||||
## Combined Encoder-Decoder
|
||||
"""
|
||||
|
||||
def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: Module, tgt_embed: Module, generator: Module):
|
||||
def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: nn.Module, tgt_embed: nn.Module, generator: nn.Module):
|
||||
super().__init__()
|
||||
self.encoder = encoder
|
||||
self.decoder = decoder
|
||||
|
||||
@ -26,10 +26,8 @@ import numpy as np
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
from labml_helpers.module import Module
|
||||
|
||||
|
||||
class PositionalEncoding(Module):
|
||||
class PositionalEncoding(nn.Module):
|
||||
def __init__(self, d_model: int, dropout_prob: float, max_len: int = 5000):
|
||||
super().__init__()
|
||||
self.dropout = nn.Dropout(dropout_prob)
|
||||
|
||||
Reference in New Issue
Block a user