This commit is contained in:
Varuna Jayasiri
2020-11-18 10:30:48 +05:30
parent 5ecec73cc5
commit ae7218774b

View File

@ -2,7 +2,7 @@
# Generative Adversarial Networks experiment with MNIST
"""
from typing import Optional
from typing import Any
import torch
import torch.nn as nn
@ -16,7 +16,7 @@ from labml_helpers.datasets.mnist import MNISTConfigs
from labml_helpers.device import DeviceConfigs
from labml_helpers.module import Module
from labml_helpers.optimizer import OptimizerConfigs
from labml_helpers.train_valid import MODE_STATE, BatchStepProtocol, TrainValidConfigs, hook_model_outputs
from labml_helpers.train_valid import TrainValidConfigs, hook_model_outputs, BatchIndex
from labml_nn.gan import DiscriminatorLogitsLoss, GeneratorLogitsLoss
@ -79,89 +79,6 @@ class Discriminator(Module):
return self.layers(x.view(x.shape[0], -1))
class GANBatchStep(BatchStepProtocol):
def __init__(self, *,
discriminator: Module,
generator: Module,
discriminator_optimizer: Optional[torch.optim.Adam],
generator_optimizer: Optional[torch.optim.Adam],
discriminator_loss: DiscriminatorLogitsLoss,
generator_loss: GeneratorLogitsLoss,
discriminator_k: int):
self.discriminator_k = discriminator_k
self.generator = generator
self.discriminator = discriminator
self.generator_loss = generator_loss
self.discriminator_loss = discriminator_loss
self.generator_optimizer = generator_optimizer
self.discriminator_optimizer = discriminator_optimizer
hook_model_outputs(self.generator, 'generator')
hook_model_outputs(self.discriminator, 'discriminator')
tracker.set_scalar("loss.generator.*", True)
tracker.set_scalar("loss.discriminator.*", True)
tracker.set_image("generated", True, 1 / 100)
def prepare_for_iteration(self):
if MODE_STATE.is_train:
self.generator.train()
self.discriminator.train()
else:
self.generator.eval()
self.discriminator.eval()
def process(self, batch: any, state: any):
device = self.discriminator.device
data, target = batch
data, target = data.to(device), target.to(device)
# Train the discriminator
with monit.section("discriminator"):
for _ in range(self.discriminator_k):
latent = torch.randn(data.shape[0], 100, device=device)
if MODE_STATE.is_train:
self.discriminator_optimizer.zero_grad()
logits_true = self.discriminator(data)
logits_false = self.discriminator(self.generator(latent).detach())
loss_true, loss_false = self.discriminator_loss(logits_true, logits_false)
loss = loss_true + loss_false
# Log stuff
tracker.add("loss.discriminator.true.", loss_true)
tracker.add("loss.discriminator.false.", loss_false)
tracker.add("loss.discriminator.", loss)
# Train
if MODE_STATE.is_train:
loss.backward()
if MODE_STATE.is_log_parameters:
pytorch_utils.store_model_indicators(self.discriminator, 'discriminator')
self.discriminator_optimizer.step()
# Train the generator
with monit.section("generator"):
latent = torch.randn(data.shape[0], 100, device=device)
if MODE_STATE.is_train:
self.generator_optimizer.zero_grad()
generated_images = self.generator(latent)
logits = self.discriminator(generated_images)
loss = self.generator_loss(logits)
# Log stuff
tracker.add('generated', generated_images[0:5])
tracker.add("loss.generator.", loss)
# Train
if MODE_STATE.is_train:
loss.backward()
if MODE_STATE.is_log_parameters:
pytorch_utils.store_model_indicators(self.generator, 'generator')
self.generator_optimizer.step()
return {'samples': len(data)}, None
class Configs(MNISTConfigs, TrainValidConfigs):
device: torch.device = DeviceConfigs()
epochs: int = 10
@ -173,10 +90,77 @@ class Configs(MNISTConfigs, TrainValidConfigs):
discriminator_optimizer: torch.optim.Adam
generator_loss: GeneratorLogitsLoss
discriminator_loss: DiscriminatorLogitsLoss
batch_step = 'gan_batch_step'
label_smoothing: float = 0.2
discriminator_k: int = 1
log_params_updates: int = 2 ** 32 # 0 if not
def init(self):
self.state_modules = []
self.generator = Generator().to(self.device)
self.discriminator = Discriminator().to(self.device)
self.generator_loss = GeneratorLogitsLoss(self.label_smoothing).to(self.device)
self.discriminator_loss = DiscriminatorLogitsLoss(self.label_smoothing).to(self.device)
hook_model_outputs(self.mode, self.generator, 'generator')
hook_model_outputs(self.mode, self.discriminator, 'discriminator')
tracker.set_scalar("loss.generator.*", True)
tracker.set_scalar("loss.discriminator.*", True)
tracker.set_image("generated", True, 1 / 100)
def step(self, batch: Any, batch_idx: BatchIndex):
self.generator.train(self.mode.is_train)
self.discriminator.train(self.mode.is_train)
data, target = batch[0].to(self.device), batch[1].to(self.device)
# Increment step in training mode
if self.mode.is_train:
tracker.add_global_step(len(data))
# Train the discriminator
with monit.section("discriminator"):
for _ in range(self.discriminator_k):
latent = torch.randn(data.shape[0], 100, device=self.device)
logits_true = self.discriminator(data)
logits_false = self.discriminator(self.generator(latent).detach())
loss_true, loss_false = self.discriminator_loss(logits_true, logits_false)
loss = loss_true + loss_false
# Log stuff
tracker.add("loss.discriminator.true.", loss_true)
tracker.add("loss.discriminator.false.", loss_false)
tracker.add("loss.discriminator.", loss)
# Train
if self.mode.is_train:
self.discriminator_optimizer.zero_grad()
loss.backward()
if batch_idx.is_interval(self.log_params_updates):
pytorch_utils.store_model_indicators(self.discriminator, 'discriminator')
self.discriminator_optimizer.step()
# Train the generator
with monit.section("generator"):
latent = torch.randn(data.shape[0], 100, device=self.device)
generated_images = self.generator(latent)
logits = self.discriminator(generated_images)
loss = self.generator_loss(logits)
# Log stuff
tracker.add('generated', generated_images[0:5])
tracker.add("loss.generator.", loss)
# Train
if self.mode.is_train:
self.generator_optimizer.zero_grad()
loss.backward()
if batch_idx.is_interval(self.log_params_updates):
pytorch_utils.store_model_indicators(self.generator, 'generator')
self.generator_optimizer.step()
tracker.save()
@option(Configs.dataset_transforms)
def mnist_transforms():
@ -186,23 +170,6 @@ def mnist_transforms():
])
@option(Configs.batch_step)
def gan_batch_step(c: Configs):
return GANBatchStep(discriminator=c.discriminator,
generator=c.generator,
discriminator_optimizer=c.discriminator_optimizer,
generator_optimizer=c.generator_optimizer,
discriminator_loss=c.discriminator_loss,
generator_loss=c.generator_loss,
discriminator_k=c.discriminator_k)
calculate(Configs.generator, 'mlp', lambda c: Generator().to(c.device))
calculate(Configs.discriminator, 'mlp', lambda c: Discriminator().to(c.device))
calculate(Configs.generator_loss, lambda c: GeneratorLogitsLoss(c.label_smoothing).to(c.device))
calculate(Configs.discriminator_loss, lambda c: DiscriminatorLogitsLoss(c.label_smoothing).to(c.device))
@option(Configs.discriminator_optimizer)
def _discriminator_optimizer(c: Configs):
opt_conf = OptimizerConfigs()