short long

This commit is contained in:
Varuna Jayasiri
2021-08-27 17:00:00 +05:30
parent b2c61b5a52
commit a4c720debf
4 changed files with 241 additions and 1 deletions

View File

@ -0,0 +1,71 @@
"""
---
title: Attention with Linear Biases (ALiBi)
summary: >
Documented implementation with explanations of Attention with Linear Biases (ALiBi)
---
# Attention with Linear Biases (ALiBi)
This is an implementation of Attention with Linear Biases (ALiBi).
"""
import math
import torch
from torch import nn
from labml.logger import inspect
from labml_nn.transformers.mha import MultiHeadAttention
def get_slopes(n_heads: int):
"""
## Get head-specific slope $m$ for each head
"""
assert math.log2(n_heads).is_integer()
s = (2 ** (-2 ** -(math.log2(n_heads) - 3)))
r = s
return [s * (r ** i) for i in range(n_heads)]
class AlibiMultiHeadAttention(MultiHeadAttention):
"""
## Attention with Linear Biases (ALiBi)
We override [Multi-Head Attention](mha.html) module so we only need to
write the `get_scores` method.
"""
def __init__(self, heads: int, d_model: int, dropout_prob: float = 0.1):
# The linear transformations do not need a bias since we
# explicitly include it when calculating scores.
# However having a bias for `value` might make sense.
super().__init__(heads, d_model, dropout_prob)
self.slopes = nn.Parameter(torch.tensor(get_slopes(heads)), requires_grad=False)
def get_scores(self, query: torch.Tensor, key: torch.Tensor):
r"""
### Calculate attention scores and add attention biases
"""
# scores has shape `[query_seq_len, key_seq_len, batch_size, head]`
scores = super().get_scores(query, key)
distance = torch.arange(scores.shape[1]).to(scores.device, scores.dtype)
bias = distance[None, :, None, None] * self.slopes[None, None, None, :]
# add to scores
scores = scores + bias
return scores
def _test_slopes():
inspect(get_slopes(8))
inspect(get_slopes(16))
if __name__ == '__main__':
_test_slopes()

View File

@ -0,0 +1,158 @@
from pathlib import PurePath, Path
from typing import Callable, Optional
from torch.utils.data import DataLoader
from labml import experiment, monit, lab
from labml.configs import option, calculate
from labml.utils.download import download_file
from labml_helpers.datasets.text import SequentialDataLoader, SequentialUnBatchedDataset, TextDataset
from labml_nn.alibi import AlibiMultiHeadAttention
from labml_nn.experiments.nlp_autoregression import transpose_batch
from labml_nn.transformers import TransformerConfigs
from labml_nn.transformers.gpt import Configs as GPTConfigs
class Configs(GPTConfigs):
transformer: TransformerConfigs = 'GPT_ALiBi'
valid_seq_len: int = 128
valid_loader = 'shuffled_longer_valid_loader'
text: TextDataset = 'tiny_shakespeare_no_split'
# ### Multi-head Attention
def _alibi_mha(c: TransformerConfigs):
return AlibiMultiHeadAttention(c.n_heads, c.d_model, dropout_prob=c.dropout)
calculate(TransformerConfigs.encoder_attn, 'alibi_mha', _alibi_mha)
calculate(TransformerConfigs.decoder_attn, 'alibi_mha', _alibi_mha)
calculate(TransformerConfigs.decoder_mem_attn, 'alibi_mha', _alibi_mha)
@option(Configs.valid_loader)
def shuffled_longer_valid_loader(c: Configs):
"""
### Shuffled validation data loader
"""
return DataLoader(SequentialUnBatchedDataset(text=c.text.valid,
dataset=c.text,
seq_len=c.valid_seq_len),
batch_size=c.batch_size,
collate_fn=transpose_batch,
shuffle=True)
@option(Configs.transformer, 'GPT_ALiBi')
def _transformer_configs(c: Configs):
"""
### Transformer configurations
"""
# We use our
# [configurable transformer implementation](../configs.html#TransformerConfigs)
conf = TransformerConfigs()
# Set the vocabulary sizes for embeddings and generating logits
conf.n_src_vocab = c.n_tokens
conf.n_tgt_vocab = c.n_tokens
# GPT uses GELU activation for position wise feedforward
conf.ffn.activation = 'GELU'
conf.src_embed = 'no_pos'
conf.tgt_embed = 'no_pos'
conf.encoder_attn = 'alibi_mha'
conf.decoder_attn = 'alibi_mha'
conf.decoder_mem_attn = 'alibi_mha'
#
return conf
class TextFileDataset(TextDataset):
standard_tokens = []
def __init__(self, path: PurePath, tokenizer: Callable, *,
url: Optional[str] = None,
filter_subset: Optional[int] = None):
path = Path(path)
if not path.exists():
if not url:
raise FileNotFoundError(str(path))
else:
download_file(url, path)
with monit.section("Load data"):
text = self.load(path)
if filter_subset:
text = text[:filter_subset]
super().__init__(path, tokenizer, text, text, '')
@option(Configs.text)
def tiny_shakespeare_no_split(c: Configs):
"""
### Tiny Shakespeare dataset
It will download from the url if not present
"""
return TextFileDataset(
lab.get_data_path() / 'tiny_shakespeare.txt',
c.tokenizer,
url='https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt')
def main():
# Create experiment
experiment.create(name="gpt_alibi")
# Create configs
conf = Configs()
# Override configurations
experiment.configs(conf, {
# Use character level tokenizer
'tokenizer': 'character',
# Prompt separator is blank
'prompt_separator': '',
# Starting prompt for sampling
'prompt': 'It is ',
# Use Tiny Shakespeare dataset
'text': 'tiny_shakespeare_no_split',
# Use a context size of $128$
'seq_len': 64,
# Use a context size of $128$
'valid_seq_len': 80,
# Train for $32$ epochs
'epochs': 128,
# Batch size $128$
'batch_size': 128,
# Switch between training and validation for $10$ times
# per epoch
'inner_iterations': 10,
# Transformer configurations
'transformer.d_model': 128,
'transformer.ffn.d_ff': 512,
'transformer.n_heads': 8,
'transformer.n_layers': 3,
'transformer.dropout': 0.2,
'is_log_last_token_loss': True,
})
# Set models for saving and loading
experiment.add_pytorch_models({'model': conf.model})
experiment.load('511bfbc8071b11ecad290d807660f656')
# Start the experiment
with experiment.start():
# Run training
conf.run()
#
if __name__ == '__main__':
main()

View File

@ -88,6 +88,9 @@ class NLPAutoRegressionConfigs(TrainValidConfigs):
# Validation data loader # Validation data loader
valid_loader: DataLoader = 'shuffled_valid_loader' valid_loader: DataLoader = 'shuffled_valid_loader'
# Report last token loss
is_log_last_token_loss: bool = False
def init(self): def init(self):
""" """
### Initialization ### Initialization
@ -108,6 +111,9 @@ class NLPAutoRegressionConfigs(TrainValidConfigs):
### Training or validation step ### Training or validation step
""" """
# Set training/eval mode
self.model.train(self.mode.is_train)
# Move data to the device # Move data to the device
data, target = batch[0].to(self.device), batch[1].to(self.device) data, target = batch[0].to(self.device), batch[1].to(self.device)
@ -126,6 +132,11 @@ class NLPAutoRegressionConfigs(TrainValidConfigs):
loss = self.loss_func(output, target) loss = self.loss_func(output, target)
tracker.add("loss.", loss) tracker.add("loss.", loss)
if self.is_log_last_token_loss:
if self.seq_len < output.shape[0]:
tracker.add('loss.seq_len.', self.loss_func(output[self.seq_len - 1], target[self.seq_len - 1]))
tracker.add('loss.last.', self.loss_func(output[-1], target[-1]))
# Calculate and log accuracy # Calculate and log accuracy
self.accuracy(output, target) self.accuracy(output, target)
self.accuracy.track() self.accuracy.track()

View File

@ -199,7 +199,7 @@ class TransformerConfigs(BaseConfigs):
# ### Multi-head Attention # ### Multi-head Attention
def _mha(c: TransformerConfigs): def _mha(c: TransformerConfigs):
return MultiHeadAttention(c.n_heads, c.d_model) return MultiHeadAttention(c.n_heads, c.d_model, dropout_prob=c.dropout)
calculate(TransformerConfigs.encoder_attn, 'mha', _mha) calculate(TransformerConfigs.encoder_attn, 'mha', _mha)