unescape *

This commit is contained in:
Varuna Jayasiri
2021-10-21 11:46:06 +05:30
parent 4c5a706836
commit 8aa83ddf7b
179 changed files with 9727 additions and 35256 deletions

View File

@ -24,6 +24,8 @@
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/experiments/cifar10.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
@ -67,6 +69,7 @@
<a href='#section-0'>#</a>
</div>
<h1>CIFAR10 Experiment</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">10</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">List</span>
@ -86,9 +89,10 @@
<a href='#section-1'>#</a>
</div>
<h2>Configurations</h2>
<p>This extends from CIFAR 10 dataset configurations from
<a href="https://github.com/labmlai/labml/tree/master/helpers"><code>labml_helpers</code></a>
and <a href="mnist.html"><code>MNISTConfigs</code></a>.</p>
<p>This extends from CIFAR 10 dataset configurations from <a href="https://github.com/labmlai/labml/tree/master/helpers"><code>labml_helpers</code>
</a> and <a href="mnist.html"><code>MNISTConfigs</code>
</a>.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">21</span><span class="k">class</span> <span class="nc">CIFAR10Configs</span><span class="p">(</span><span class="n">CIFAR10DatasetConfigs</span><span class="p">,</span> <span class="n">MNISTConfigs</span><span class="p">):</span></pre></div>
@ -99,7 +103,8 @@
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>Use CIFAR10 dataset by default</p>
<p>Use CIFAR10 dataset by default </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">30</span> <span class="n">dataset_name</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s1">&#39;CIFAR10&#39;</span></pre></div>
@ -111,6 +116,7 @@
<a href='#section-3'>#</a>
</div>
<h3>Augmented CIFAR 10 train dataset</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">33</span><span class="nd">@option</span><span class="p">(</span><span class="n">CIFAR10Configs</span><span class="o">.</span><span class="n">train_dataset</span><span class="p">)</span>
@ -138,7 +144,8 @@
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Pad and crop</p>
<p>Pad and crop </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span> <span class="n">transforms</span><span class="o">.</span><span class="n">RandomCrop</span><span class="p">(</span><span class="mi">32</span><span class="p">,</span> <span class="n">padding</span><span class="o">=</span><span class="mi">4</span><span class="p">),</span></pre></div>
@ -149,7 +156,8 @@
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Random horizontal flip</p>
<p>Random horizontal flip </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">47</span> <span class="n">transforms</span><span class="o">.</span><span class="n">RandomHorizontalFlip</span><span class="p">(),</span></pre></div>
@ -160,7 +168,8 @@
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">transforms</span><span class="o">.</span><span class="n">ToTensor</span><span class="p">(),</span>
@ -174,6 +183,7 @@
<a href='#section-8'>#</a>
</div>
<h3>Non-augmented CIFAR 10 validation dataset</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span><span class="nd">@option</span><span class="p">(</span><span class="n">CIFAR10Configs</span><span class="o">.</span><span class="n">valid_dataset</span><span class="p">)</span>
@ -205,6 +215,7 @@
<a href='#section-10'>#</a>
</div>
<h3>VGG model for CIFAR-10 classification</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span><span class="k">class</span> <span class="nc">CIFAR10VGGModel</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
@ -215,7 +226,8 @@
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Convolution and activation combined</p>
<p> Convolution and activation combined</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">75</span> <span class="k">def</span> <span class="nf">conv_block</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">in_channels</span><span class="p">,</span> <span class="n">out_channels</span><span class="p">)</span> <span class="o">-&gt;</span> <span class="n">nn</span><span class="o">.</span><span class="n">Module</span><span class="p">:</span></pre></div>
@ -252,8 +264,8 @@
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>5 $2 \times 2$ pooling layers will produce a output of size $1 \ times 1$.
CIFAR 10 image size is $32 \times 32$</p>
<p>5 <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">2</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">2</span></span></span></span> pooling layers will produce a output of size <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord">1</span><span class="mspace"> </span><span class="mord mathnormal">t</span><span class="mord mathnormal">im</span><span class="mord mathnormal">es</span><span class="mord">1</span></span></span></span>. CIFAR 10 image size is <span class="katex"><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.72777em;vertical-align:-0.08333em;"></span><span class="mord">32</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">32</span></span></span></span> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">89</span> <span class="k">assert</span> <span class="nb">len</span><span class="p">(</span><span class="n">blocks</span><span class="p">)</span> <span class="o">==</span> <span class="mi">5</span>
@ -265,7 +277,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>RGB channels</p>
<p>RGB channels </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">92</span> <span class="n">in_channels</span> <span class="o">=</span> <span class="mi">3</span></pre></div>
@ -276,7 +289,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Number of channels in each layer in each block</p>
<p>Number of channels in each layer in each block </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">94</span> <span class="k">for</span> <span class="n">block</span> <span class="ow">in</span> <span class="n">blocks</span><span class="p">:</span></pre></div>
@ -287,7 +301,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Convolution, Normalization and Activation layers</p>
<p>Convolution, Normalization and Activation layers </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">96</span> <span class="k">for</span> <span class="n">channels</span> <span class="ow">in</span> <span class="n">block</span><span class="p">:</span>
@ -300,7 +315,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Max pooling at end of each block</p>
<p>Max pooling at end of each block </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">100</span> <span class="n">layers</span> <span class="o">+=</span> <span class="p">[</span><span class="n">nn</span><span class="o">.</span><span class="n">MaxPool2d</span><span class="p">(</span><span class="n">kernel_size</span><span class="o">=</span><span class="mi">2</span><span class="p">,</span> <span class="n">stride</span><span class="o">=</span><span class="mi">2</span><span class="p">)]</span></pre></div>
@ -311,7 +327,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Create a sequential model with the layers</p>
<p>Create a sequential model with the layers </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">103</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Sequential</span><span class="p">(</span><span class="o">*</span><span class="n">layers</span><span class="p">)</span></pre></div>
@ -322,7 +339,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Final logits layer</p>
<p>Final logits layer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">105</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="n">in_channels</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span></pre></div>
@ -344,7 +362,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>The VGG layers</p>
<p>The VGG layers </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">109</span> <span class="n">x</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">layers</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
@ -355,7 +374,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Reshape for classification layer</p>
<p>Reshape for classification layer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">111</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span></pre></div>
@ -366,7 +386,8 @@ CIFAR 10 image size is $32 \times 32$</p>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Final linear layer</p>
<p>Final linear layer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">113</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
@ -377,24 +398,6 @@ CIFAR 10 image size is $32 \times 32$</p>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')

View File

@ -24,6 +24,8 @@
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/experiments/index.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
@ -66,24 +68,6 @@
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')

View File

@ -24,6 +24,8 @@
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/experiments/mnist.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
@ -67,6 +69,7 @@
<a href='#section-0'>#</a>
</div>
<h1>MNIST Experiment</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">11</span><span></span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
@ -87,9 +90,8 @@
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<p><a id="MNISTConfigs"></p>
<h2>Trainer configurations</h2>
<p></a></p>
<p> &lt;a id=&quot;MNISTConfigs&quot;&gt; ## Trainer configurations &lt;/a&gt;</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">24</span><span class="k">class</span> <span class="nc">MNISTConfigs</span><span class="p">(</span><span class="n">MNISTDatasetConfigs</span><span class="p">,</span> <span class="n">TrainValidConfigs</span><span class="p">):</span></pre></div>
@ -100,7 +102,8 @@
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>Optimizer</p>
<p>Optimizer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">32</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span></pre></div>
@ -111,7 +114,8 @@
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Training device</p>
<p>Training device </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">34</span> <span class="n">device</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">DeviceConfigs</span><span class="p">()</span></pre></div>
@ -122,7 +126,8 @@
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Classification model</p>
<p>Classification model </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">37</span> <span class="n">model</span><span class="p">:</span> <span class="n">Module</span></pre></div>
@ -133,7 +138,8 @@
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Number of epochs to train for</p>
<p>Number of epochs to train for </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">39</span> <span class="n">epochs</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">10</span></pre></div>
@ -144,7 +150,8 @@
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Number of times to switch between training and validation within an epoch</p>
<p>Number of times to switch between training and validation within an epoch </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="n">inner_iterations</span> <span class="o">=</span> <span class="mi">10</span></pre></div>
@ -155,7 +162,8 @@
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Accuracy function</p>
<p>Accuracy function </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">Accuracy</span><span class="p">()</span></pre></div>
@ -166,7 +174,8 @@
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Loss function</p>
<p>Loss function </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">47</span> <span class="n">loss_func</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">()</span></pre></div>
@ -178,6 +187,7 @@
<a href='#section-9'>#</a>
</div>
<h3>Initialization</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="k">def</span> <span class="nf">init</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
@ -188,7 +198,8 @@
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Set tracker configurations</p>
<p>Set tracker configurations </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;loss.*&quot;</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
@ -200,7 +211,8 @@
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Add a hook to log module outputs</p>
<p>Add a hook to log module outputs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">57</span> <span class="n">hook_model_outputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">,</span> <span class="s1">&#39;model&#39;</span><span class="p">)</span></pre></div>
@ -211,10 +223,8 @@
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Add accuracy as a state module.
The name is probably confusing, since it&rsquo;s meant to store
states between training and validation for RNNs.
This will keep the accuracy metric stats separate for training and validation.</p>
<p>Add accuracy as a state module. The name is probably confusing, since it&#x27;s meant to store states between training and validation for RNNs. This will keep the accuracy metric stats separate for training and validation. </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">62</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_modules</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="p">]</span></pre></div>
@ -226,6 +236,7 @@ This will keep the accuracy metric stats separate for training and validation.</
<a href='#section-13'>#</a>
</div>
<h3>Training or validation step</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">64</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">any</span><span class="p">,</span> <span class="n">batch_idx</span><span class="p">:</span> <span class="n">BatchIndex</span><span class="p">):</span></pre></div>
@ -236,7 +247,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Training/Evaluation mode</p>
<p>Training/Evaluation mode </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">)</span></pre></div>
@ -247,7 +259,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Move data to the device</p>
<p>Move data to the device </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">73</span> <span class="n">data</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
@ -258,7 +271,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Update global step (number of samples processed) when in training mode</p>
<p>Update global step (number of samples processed) when in training mode </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">76</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
@ -270,7 +284,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Whether to capture model outputs</p>
<p>Whether to capture model outputs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">80</span> <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">is_log_activations</span><span class="o">=</span><span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">):</span></pre></div>
@ -281,7 +296,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Get model outputs.</p>
<p>Get model outputs. </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">82</span> <span class="n">output</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></pre></div>
@ -292,7 +308,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Calculate and log loss</p>
<p>Calculate and log loss </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">85</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
@ -304,7 +321,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Calculate and log accuracy</p>
<p>Calculate and log accuracy </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">89</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
@ -316,7 +334,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Train the model</p>
<p>Train the model </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">93</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span></pre></div>
@ -327,7 +346,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-22'>#</a>
</div>
<p>Calculate gradients</p>
<p>Calculate gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">95</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span></pre></div>
@ -338,7 +358,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Take optimizer step</p>
<p>Take optimizer step </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">97</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></pre></div>
@ -349,7 +370,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Log the model parameters and gradients on last batch of every epoch</p>
<p>Log the model parameters and gradients on last batch of every epoch </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">99</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">:</span>
@ -361,7 +383,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Clear the gradients</p>
<p>Clear the gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">102</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span></pre></div>
@ -372,7 +395,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>Save the tracked metrics</p>
<p>Save the tracked metrics </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">105</span> <span class="n">tracker</span><span class="o">.</span><span class="n">save</span><span class="p">()</span></pre></div>
@ -384,6 +408,7 @@ This will keep the accuracy metric stats separate for training and validation.</
<a href='#section-27'>#</a>
</div>
<h3>Default optimizer configurations</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">108</span><span class="nd">@option</span><span class="p">(</span><span class="n">MNISTConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">)</span>
@ -409,24 +434,6 @@ This will keep the accuracy metric stats separate for training and validation.</
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')

View File

@ -24,6 +24,8 @@
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/experiments/nlp_autoregression.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
@ -67,6 +69,7 @@
<a href='#section-0'>#</a>
</div>
<h1>Auto-regressive NLP model trainer</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">11</span><span></span><span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Callable</span>
@ -92,6 +95,7 @@
<a href='#section-1'>#</a>
</div>
<h3>Cross entropy loss</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">28</span><span class="k">class</span> <span class="nc">CrossEntropyLoss</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
@ -127,11 +131,9 @@
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p><a id="NLPAutoRegressionConfigs"></p>
<h2>Trainer configurations</h2>
<p></a></p>
<p>This has the basic configurations for NLP auto-regressive task training.
All the properties are configurable.</p>
<p> &lt;a id=&quot;NLPAutoRegressionConfigs&quot;&gt; ## Trainer configurations &lt;/a&gt;</p>
<p>This has the basic configurations for NLP auto-regressive task training. All the properties are configurable.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">41</span><span class="k">class</span> <span class="nc">NLPAutoRegressionConfigs</span><span class="p">(</span><span class="n">TrainValidConfigs</span><span class="p">):</span></pre></div>
@ -142,7 +144,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Optimizer</p>
<p>Optimizer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">52</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span></pre></div>
@ -153,7 +156,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Training device</p>
<p>Training device </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">54</span> <span class="n">device</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">DeviceConfigs</span><span class="p">()</span></pre></div>
@ -164,7 +168,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Autoregressive model</p>
<p>Autoregressive model </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">57</span> <span class="n">model</span><span class="p">:</span> <span class="n">Module</span></pre></div>
@ -175,7 +180,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Text dataset</p>
<p>Text dataset </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">59</span> <span class="n">text</span><span class="p">:</span> <span class="n">TextDataset</span></pre></div>
@ -186,7 +192,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Batch size</p>
<p>Batch size </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">61</span> <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span></pre></div>
@ -197,7 +204,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Length of the sequence, or context size</p>
<p>Length of the sequence, or context size </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">63</span> <span class="n">seq_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">512</span></pre></div>
@ -208,7 +216,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Number of token in vocabulary</p>
<p>Number of token in vocabulary </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">65</span> <span class="n">n_tokens</span><span class="p">:</span> <span class="nb">int</span></pre></div>
@ -219,7 +228,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Tokenizer</p>
<p>Tokenizer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">67</span> <span class="n">tokenizer</span><span class="p">:</span> <span class="n">Callable</span> <span class="o">=</span> <span class="s1">&#39;character&#39;</span></pre></div>
@ -230,7 +240,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>Text prompt to start sampling (for illustration)</p>
<p>Text prompt to start sampling (for illustration) </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">70</span> <span class="n">prompt</span><span class="p">:</span> <span class="nb">str</span></pre></div>
@ -241,7 +252,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>The token separator when sampling (blank for character level tokenization)</p>
<p>The token separator when sampling (blank for character level tokenization) </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">72</span> <span class="n">prompt_separator</span><span class="p">:</span> <span class="nb">str</span></pre></div>
@ -252,7 +264,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Whether to periodically save models</p>
<p>Whether to periodically save models </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">75</span> <span class="n">is_save_models</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
@ -263,7 +276,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Loss function</p>
<p>Loss function </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">78</span> <span class="n">loss_func</span> <span class="o">=</span> <span class="n">CrossEntropyLoss</span><span class="p">()</span></pre></div>
@ -274,7 +288,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Accuracy function</p>
<p>Accuracy function </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">80</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">Accuracy</span><span class="p">()</span></pre></div>
@ -285,7 +300,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-18'>#</a>
</div>
<p>Model embedding size</p>
<p>Model embedding size </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">82</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">512</span></pre></div>
@ -296,7 +312,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Gradient clipping</p>
<p>Gradient clipping </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">84</span> <span class="n">grad_norm_clip</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span></pre></div>
@ -307,7 +324,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Training data loader</p>
<p>Training data loader </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">87</span> <span class="n">train_loader</span><span class="p">:</span> <span class="n">DataLoader</span> <span class="o">=</span> <span class="s1">&#39;shuffled_train_loader&#39;</span></pre></div>
@ -318,7 +336,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Validation data loader</p>
<p>Validation data loader </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">89</span> <span class="n">valid_loader</span><span class="p">:</span> <span class="n">DataLoader</span> <span class="o">=</span> <span class="s1">&#39;shuffled_valid_loader&#39;</span></pre></div>
@ -330,6 +349,7 @@ All the properties are configurable.</p>
<a href='#section-22'>#</a>
</div>
<h3>Initialization</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">91</span> <span class="k">def</span> <span class="nf">init</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
@ -340,7 +360,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Set tracker configurations</p>
<p>Set tracker configurations </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">96</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;accuracy.*&quot;</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
@ -352,7 +373,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Add a hook to log module outputs</p>
<p>Add a hook to log module outputs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">99</span> <span class="n">hook_model_outputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">,</span> <span class="s1">&#39;model&#39;</span><span class="p">)</span></pre></div>
@ -363,10 +385,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Add accuracy as a state module.
The name is probably confusing, since it&rsquo;s meant to store
states between training and validation for RNNs.
This will keep the accuracy metric stats separate for training and validation.</p>
<p>Add accuracy as a state module. The name is probably confusing, since it&#x27;s meant to store states between training and validation for RNNs. This will keep the accuracy metric stats separate for training and validation. </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">104</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_modules</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="p">]</span></pre></div>
@ -377,7 +397,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>Override to calculate and log other metrics</p>
<p>Override to calculate and log other metrics </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">106</span> <span class="k">def</span> <span class="nf">other_metrics</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">output</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">,</span> <span class="n">target</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
@ -400,6 +421,7 @@ This will keep the accuracy metric stats separate for training and validation.</
<a href='#section-28'>#</a>
</div>
<h3>Training or validation step</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">110</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">any</span><span class="p">,</span> <span class="n">batch_idx</span><span class="p">:</span> <span class="n">BatchIndex</span><span class="p">):</span></pre></div>
@ -410,7 +432,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p>Set training/eval mode</p>
<p>Set training/eval mode </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">116</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">train</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">)</span></pre></div>
@ -421,7 +444,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Move data to the device</p>
<p>Move data to the device </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">119</span> <span class="n">data</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
@ -432,7 +456,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
<p>Update global step (number of tokens processed) when in training mode</p>
<p>Update global step (number of tokens processed) when in training mode </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">122</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
@ -444,7 +469,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Whether to capture model outputs</p>
<p>Whether to capture model outputs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">126</span> <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">is_log_activations</span><span class="o">=</span><span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">):</span></pre></div>
@ -455,9 +481,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
<p>Get model outputs.
It&rsquo;s returning a tuple for states when using RNNs.
This is not implemented yet. 😜</p>
<p>Get model outputs. It&#x27;s returning a tuple for states when using RNNs. This is not implemented yet. 😜 </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">130</span> <span class="n">output</span><span class="p">,</span> <span class="o">*</span><span class="n">_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></pre></div>
@ -468,7 +493,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-34'>#</a>
</div>
<p>Calculate and log loss</p>
<p>Calculate and log loss </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">133</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
@ -480,7 +506,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-35'>#</a>
</div>
<p>Calculate and log accuracy</p>
<p>Calculate and log accuracy </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">137</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
@ -494,7 +521,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-36'>#</a>
</div>
<p>Train the model</p>
<p>Train the model </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">143</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span></pre></div>
@ -505,7 +533,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-37'>#</a>
</div>
<p>Calculate gradients</p>
<p>Calculate gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">145</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span></pre></div>
@ -516,7 +545,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-38'>#</a>
</div>
<p>Clip gradients</p>
<p>Clip gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">147</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">clip_grad_norm_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">max_norm</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">grad_norm_clip</span><span class="p">)</span></pre></div>
@ -527,7 +557,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-39'>#</a>
</div>
<p>Take optimizer step</p>
<p>Take optimizer step </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">149</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></pre></div>
@ -538,7 +569,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-40'>#</a>
</div>
<p>Log the model parameters and gradients on last batch of every epoch</p>
<p>Log the model parameters and gradients on last batch of every epoch </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">151</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">:</span>
@ -550,7 +582,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-41'>#</a>
</div>
<p>Clear the gradients</p>
<p>Clear the gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">154</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span></pre></div>
@ -561,7 +594,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-42'>#</a>
</div>
<p>Save the tracked metrics</p>
<p>Save the tracked metrics </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">157</span> <span class="n">tracker</span><span class="o">.</span><span class="n">save</span><span class="p">()</span></pre></div>
@ -573,6 +607,7 @@ This is not implemented yet. 😜</p>
<a href='#section-43'>#</a>
</div>
<h3>Sampling function to generate samples periodically while training</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">159</span> <span class="k">def</span> <span class="nf">sample</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
@ -583,7 +618,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-44'>#</a>
</div>
<p>Starting prompt</p>
<p>Starting prompt </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">165</span> <span class="n">prompt</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">prompt</span></pre></div>
@ -594,7 +630,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-45'>#</a>
</div>
<p>Collect output for printing</p>
<p>Collect output for printing </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">167</span> <span class="n">log</span> <span class="o">=</span> <span class="p">[(</span><span class="n">prompt</span><span class="p">,</span> <span class="n">Text</span><span class="o">.</span><span class="n">subtle</span><span class="p">)]</span></pre></div>
@ -605,7 +642,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-46'>#</a>
</div>
<p>Sample 25 tokens</p>
<p>Sample 25 tokens </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">169</span> <span class="k">for</span> <span class="n">i</span> <span class="ow">in</span> <span class="n">monit</span><span class="o">.</span><span class="n">iterate</span><span class="p">(</span><span class="s1">&#39;Sample&#39;</span><span class="p">,</span> <span class="mi">25</span><span class="p">):</span></pre></div>
@ -616,7 +654,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-47'>#</a>
</div>
<p>Tokenize the prompt</p>
<p>Tokenize the prompt </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">171</span> <span class="n">data</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">text</span><span class="o">.</span><span class="n">text_to_i</span><span class="p">(</span><span class="n">prompt</span><span class="p">)</span><span class="o">.</span><span class="n">unsqueeze</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
@ -628,7 +667,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-48'>#</a>
</div>
<p>Get the model output</p>
<p>Get the model output </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">174</span> <span class="n">output</span><span class="p">,</span> <span class="o">*</span><span class="n">_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></pre></div>
@ -639,7 +679,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-49'>#</a>
</div>
<p>Get the model prediction (greedy)</p>
<p>Get the model prediction (greedy) </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">176</span> <span class="n">output</span> <span class="o">=</span> <span class="n">output</span><span class="o">.</span><span class="n">argmax</span><span class="p">(</span><span class="n">dim</span><span class="o">=-</span><span class="mi">1</span><span class="p">)</span><span class="o">.</span><span class="n">squeeze</span><span class="p">()</span></pre></div>
@ -650,7 +691,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-50'>#</a>
</div>
<p>Add the prediction to prompt</p>
<p>Add the prediction to prompt </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">178</span> <span class="n">prompt</span> <span class="o">+=</span> <span class="bp">self</span><span class="o">.</span><span class="n">prompt_separator</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">text</span><span class="o">.</span><span class="n">itos</span><span class="p">[</span><span class="n">output</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]]</span></pre></div>
@ -661,7 +703,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-51'>#</a>
</div>
<p>Add the prediction for logging</p>
<p>Add the prediction for logging </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">180</span> <span class="n">log</span> <span class="o">+=</span> <span class="p">[(</span><span class="bp">self</span><span class="o">.</span><span class="n">prompt_separator</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">text</span><span class="o">.</span><span class="n">itos</span><span class="p">[</span><span class="n">output</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">]],</span> <span class="n">Text</span><span class="o">.</span><span class="n">value</span><span class="p">)]</span></pre></div>
@ -672,7 +715,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-52'>#</a>
</div>
<p>Print the sampled output</p>
<p>Print the sampled output </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">183</span> <span class="n">logger</span><span class="o">.</span><span class="n">log</span><span class="p">(</span><span class="n">log</span><span class="p">)</span></pre></div>
@ -684,6 +728,7 @@ This is not implemented yet. 😜</p>
<a href='#section-53'>#</a>
</div>
<h3>Default <a href="../optimizers/configs.html">optimizer configurations</a></h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">186</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">)</span>
@ -711,7 +756,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-55'>#</a>
</div>
<p>Get number of tokens</p>
<p> Get number of tokens</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">200</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">n_tokens</span><span class="p">)</span>
@ -734,13 +780,12 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-57'>#</a>
</div>
<h3>Basic english tokenizer</h3>
<p>We use character level tokenizer in this experiment.
You can switch by setting,</p>
<pre><code> 'tokenizer': 'basic_english',
</code></pre>
<h3>Basic english tokenizer</h3>
<p>We use character level tokenizer in this experiment. You can switch by setting,</p>
<pre class="lang-"> &#x27;tokenizer&#x27;: &#x27;basic_english&#x27;,
</pre>
<p>as the configurations dictionary when starting the experiment.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">208</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
@ -765,6 +810,7 @@ You can switch by setting,</p>
<a href='#section-59'>#</a>
</div>
<h3>Character level tokenizer</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">227</span><span class="k">def</span> <span class="nf">character_tokenizer</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span></pre></div>
@ -787,6 +833,7 @@ You can switch by setting,</p>
<a href='#section-61'>#</a>
</div>
<h3>Character level tokenizer configuration</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">234</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
@ -811,6 +858,7 @@ You can switch by setting,</p>
</div>
<h3>Tiny Shakespeare dataset</h3>
<p>It will download from the url if not present</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">242</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">text</span><span class="p">)</span>
@ -837,6 +885,7 @@ You can switch by setting,</p>
<a href='#section-65'>#</a>
</div>
<h3>Sequential training data loader</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">255</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">train_loader</span><span class="p">)</span>
@ -863,6 +912,7 @@ You can switch by setting,</p>
<a href='#section-67'>#</a>
</div>
<h3>Sequential validation data loader</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">266</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">valid_loader</span><span class="p">)</span>
@ -889,8 +939,9 @@ You can switch by setting,</p>
<a href='#section-69'>#</a>
</div>
<h3>Transpose batch</h3>
<p><code>DataLoader</code> collects the batches on the first dimension.
We need to transpose it to be sequence first.</p>
<p><code>DataLoader</code>
collects the batches on the first dimension. We need to transpose it to be sequence first.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">277</span><span class="k">def</span> <span class="nf">transpose_batch</span><span class="p">(</span><span class="n">batch</span><span class="p">):</span></pre></div>
@ -912,7 +963,9 @@ We need to transpose it to be sequence first.</p>
<div class='section-link'>
<a href='#section-71'>#</a>
</div>
<p>Stack the batch along the second dimension <code>dim=1</code></p>
<p>Stack the batch along the second dimension <code>dim=1</code>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">287</span> <span class="n">src</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">stack</span><span class="p">(</span><span class="n">transposed_data</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">dim</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
@ -927,6 +980,7 @@ We need to transpose it to be sequence first.</p>
<a href='#section-72'>#</a>
</div>
<h3>Shuffled training data loader</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">293</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">train_loader</span><span class="p">)</span>
@ -955,6 +1009,7 @@ We need to transpose it to be sequence first.</p>
<a href='#section-74'>#</a>
</div>
<h3>Shuffled validation data loader</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">306</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPAutoRegressionConfigs</span><span class="o">.</span><span class="n">valid_loader</span><span class="p">)</span>
@ -982,24 +1037,6 @@ We need to transpose it to be sequence first.</p>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')

View File

@ -24,6 +24,8 @@
<link rel="shortcut icon" href="/icon.png"/>
<link rel="stylesheet" href="../pylit.css">
<link rel="canonical" href="https://nn.labml.ai/experiments/nlp_classification.html"/>
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.13.18/dist/katex.min.css" integrity="sha384-zTROYFVGOfTw7JV7KUu8udsvW2fx4lWOsCEDqhBreBwlHI4ioVRtmIvEThzJHGET" crossorigin="anonymous">
<!-- Global site tag (gtag.js) - Google Analytics -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-4V3HC8HBLH"></script>
<script>
@ -67,6 +69,7 @@
<a href='#section-0'>#</a>
</div>
<h1>NLP model trainer for classification</h1>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">11</span><span></span><span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">Counter</span>
@ -92,11 +95,9 @@
<div class='section-link'>
<a href='#section-1'>#</a>
</div>
<p><a id="NLPClassificationConfigs"></p>
<h2>Trainer configurations</h2>
<p></a></p>
<p>This has the basic configurations for NLP classification task training.
All the properties are configurable.</p>
<p> &lt;a id=&quot;NLPClassificationConfigs&quot;&gt; ## Trainer configurations &lt;/a&gt;</p>
<p>This has the basic configurations for NLP classification task training. All the properties are configurable.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">29</span><span class="k">class</span> <span class="nc">NLPClassificationConfigs</span><span class="p">(</span><span class="n">TrainValidConfigs</span><span class="p">):</span></pre></div>
@ -107,7 +108,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-2'>#</a>
</div>
<p>Optimizer</p>
<p>Optimizer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">40</span> <span class="n">optimizer</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">optim</span><span class="o">.</span><span class="n">Adam</span></pre></div>
@ -118,7 +120,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-3'>#</a>
</div>
<p>Training device</p>
<p>Training device </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">42</span> <span class="n">device</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">device</span> <span class="o">=</span> <span class="n">DeviceConfigs</span><span class="p">()</span></pre></div>
@ -129,7 +132,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-4'>#</a>
</div>
<p>Autoregressive model</p>
<p>Autoregressive model </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">45</span> <span class="n">model</span><span class="p">:</span> <span class="n">Module</span></pre></div>
@ -140,7 +144,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-5'>#</a>
</div>
<p>Batch size</p>
<p>Batch size </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">47</span> <span class="n">batch_size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">16</span></pre></div>
@ -151,7 +156,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-6'>#</a>
</div>
<p>Length of the sequence, or context size</p>
<p>Length of the sequence, or context size </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">49</span> <span class="n">seq_len</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">512</span></pre></div>
@ -162,7 +168,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-7'>#</a>
</div>
<p>Vocabulary</p>
<p>Vocabulary </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">51</span> <span class="n">vocab</span><span class="p">:</span> <span class="n">Vocab</span> <span class="o">=</span> <span class="s1">&#39;ag_news&#39;</span></pre></div>
@ -173,7 +180,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-8'>#</a>
</div>
<p>Number of token in vocabulary</p>
<p>Number of token in vocabulary </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">53</span> <span class="n">n_tokens</span><span class="p">:</span> <span class="nb">int</span></pre></div>
@ -184,7 +192,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-9'>#</a>
</div>
<p>Number of classes</p>
<p>Number of classes </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">55</span> <span class="n">n_classes</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="s1">&#39;ag_news&#39;</span></pre></div>
@ -195,7 +204,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-10'>#</a>
</div>
<p>Tokenizer</p>
<p>Tokenizer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">57</span> <span class="n">tokenizer</span><span class="p">:</span> <span class="n">Callable</span> <span class="o">=</span> <span class="s1">&#39;character&#39;</span></pre></div>
@ -206,7 +216,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-11'>#</a>
</div>
<p>Whether to periodically save models</p>
<p>Whether to periodically save models </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">60</span> <span class="n">is_save_models</span> <span class="o">=</span> <span class="kc">True</span></pre></div>
@ -217,7 +228,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-12'>#</a>
</div>
<p>Loss function</p>
<p>Loss function </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">63</span> <span class="n">loss_func</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">CrossEntropyLoss</span><span class="p">()</span></pre></div>
@ -228,7 +240,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-13'>#</a>
</div>
<p>Accuracy function</p>
<p>Accuracy function </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">65</span> <span class="n">accuracy</span> <span class="o">=</span> <span class="n">Accuracy</span><span class="p">()</span></pre></div>
@ -239,7 +252,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-14'>#</a>
</div>
<p>Model embedding size</p>
<p>Model embedding size </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">67</span> <span class="n">d_model</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="mi">512</span></pre></div>
@ -250,7 +264,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-15'>#</a>
</div>
<p>Gradient clipping</p>
<p>Gradient clipping </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">69</span> <span class="n">grad_norm_clip</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1.0</span></pre></div>
@ -261,7 +276,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-16'>#</a>
</div>
<p>Training data loader</p>
<p>Training data loader </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">72</span> <span class="n">train_loader</span><span class="p">:</span> <span class="n">DataLoader</span> <span class="o">=</span> <span class="s1">&#39;ag_news&#39;</span></pre></div>
@ -272,7 +288,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-17'>#</a>
</div>
<p>Validation data loader</p>
<p>Validation data loader </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">74</span> <span class="n">valid_loader</span><span class="p">:</span> <span class="n">DataLoader</span> <span class="o">=</span> <span class="s1">&#39;ag_news&#39;</span></pre></div>
@ -284,6 +301,7 @@ All the properties are configurable.</p>
<a href='#section-18'>#</a>
</div>
<h3>Initialization</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">76</span> <span class="k">def</span> <span class="nf">init</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span></pre></div>
@ -294,7 +312,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-19'>#</a>
</div>
<p>Set tracker configurations</p>
<p>Set tracker configurations </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">81</span> <span class="n">tracker</span><span class="o">.</span><span class="n">set_scalar</span><span class="p">(</span><span class="s2">&quot;accuracy.*&quot;</span><span class="p">,</span> <span class="kc">True</span><span class="p">)</span>
@ -306,7 +325,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-20'>#</a>
</div>
<p>Add a hook to log module outputs</p>
<p>Add a hook to log module outputs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">84</span> <span class="n">hook_model_outputs</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">,</span> <span class="s1">&#39;model&#39;</span><span class="p">)</span></pre></div>
@ -317,10 +337,8 @@ All the properties are configurable.</p>
<div class='section-link'>
<a href='#section-21'>#</a>
</div>
<p>Add accuracy as a state module.
The name is probably confusing, since it&rsquo;s meant to store
states between training and validation for RNNs.
This will keep the accuracy metric stats separate for training and validation.</p>
<p>Add accuracy as a state module. The name is probably confusing, since it&#x27;s meant to store states between training and validation for RNNs. This will keep the accuracy metric stats separate for training and validation. </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">89</span> <span class="bp">self</span><span class="o">.</span><span class="n">state_modules</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="p">]</span></pre></div>
@ -332,6 +350,7 @@ This will keep the accuracy metric stats separate for training and validation.</
<a href='#section-22'>#</a>
</div>
<h3>Training or validation step</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">91</span> <span class="k">def</span> <span class="nf">step</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">:</span> <span class="nb">any</span><span class="p">,</span> <span class="n">batch_idx</span><span class="p">:</span> <span class="n">BatchIndex</span><span class="p">):</span></pre></div>
@ -342,7 +361,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-23'>#</a>
</div>
<p>Move data to the device</p>
<p>Move data to the device </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">97</span> <span class="n">data</span><span class="p">,</span> <span class="n">target</span> <span class="o">=</span> <span class="n">batch</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">),</span> <span class="n">batch</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
@ -353,7 +373,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-24'>#</a>
</div>
<p>Update global step (number of tokens processed) when in training mode</p>
<p>Update global step (number of tokens processed) when in training mode </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">100</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span>
@ -365,7 +386,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-25'>#</a>
</div>
<p>Whether to capture model outputs</p>
<p>Whether to capture model outputs </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">104</span> <span class="k">with</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">update</span><span class="p">(</span><span class="n">is_log_activations</span><span class="o">=</span><span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">):</span></pre></div>
@ -376,9 +398,8 @@ This will keep the accuracy metric stats separate for training and validation.</
<div class='section-link'>
<a href='#section-26'>#</a>
</div>
<p>Get model outputs.
It&rsquo;s returning a tuple for states when using RNNs.
This is not implemented yet. 😜</p>
<p>Get model outputs. It&#x27;s returning a tuple for states when using RNNs. This is not implemented yet. 😜 </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">108</span> <span class="n">output</span><span class="p">,</span> <span class="o">*</span><span class="n">_</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="p">(</span><span class="n">data</span><span class="p">)</span></pre></div>
@ -389,7 +410,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-27'>#</a>
</div>
<p>Calculate and log loss</p>
<p>Calculate and log loss </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">111</span> <span class="n">loss</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">loss_func</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
@ -401,7 +423,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-28'>#</a>
</div>
<p>Calculate and log accuracy</p>
<p>Calculate and log accuracy </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">115</span> <span class="bp">self</span><span class="o">.</span><span class="n">accuracy</span><span class="p">(</span><span class="n">output</span><span class="p">,</span> <span class="n">target</span><span class="p">)</span>
@ -413,7 +436,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-29'>#</a>
</div>
<p>Train the model</p>
<p>Train the model </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">119</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">mode</span><span class="o">.</span><span class="n">is_train</span><span class="p">:</span></pre></div>
@ -424,7 +448,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-30'>#</a>
</div>
<p>Calculate gradients</p>
<p>Calculate gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">121</span> <span class="n">loss</span><span class="o">.</span><span class="n">backward</span><span class="p">()</span></pre></div>
@ -435,7 +460,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-31'>#</a>
</div>
<p>Clip gradients</p>
<p>Clip gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">123</span> <span class="n">torch</span><span class="o">.</span><span class="n">nn</span><span class="o">.</span><span class="n">utils</span><span class="o">.</span><span class="n">clip_grad_norm_</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">model</span><span class="o">.</span><span class="n">parameters</span><span class="p">(),</span> <span class="n">max_norm</span><span class="o">=</span><span class="bp">self</span><span class="o">.</span><span class="n">grad_norm_clip</span><span class="p">)</span></pre></div>
@ -446,7 +472,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-32'>#</a>
</div>
<p>Take optimizer step</p>
<p>Take optimizer step </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">125</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">step</span><span class="p">()</span></pre></div>
@ -457,7 +484,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-33'>#</a>
</div>
<p>Log the model parameters and gradients on last batch of every epoch</p>
<p>Log the model parameters and gradients on last batch of every epoch </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">127</span> <span class="k">if</span> <span class="n">batch_idx</span><span class="o">.</span><span class="n">is_last</span><span class="p">:</span>
@ -469,7 +497,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-34'>#</a>
</div>
<p>Clear the gradients</p>
<p>Clear the gradients </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">130</span> <span class="bp">self</span><span class="o">.</span><span class="n">optimizer</span><span class="o">.</span><span class="n">zero_grad</span><span class="p">()</span></pre></div>
@ -480,7 +509,8 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-35'>#</a>
</div>
<p>Save the tracked metrics</p>
<p>Save the tracked metrics </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">133</span> <span class="n">tracker</span><span class="o">.</span><span class="n">save</span><span class="p">()</span></pre></div>
@ -492,6 +522,7 @@ This is not implemented yet. 😜</p>
<a href='#section-36'>#</a>
</div>
<h3>Default <a href="../optimizers/configs.html">optimizer configurations</a></h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">136</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPClassificationConfigs</span><span class="o">.</span><span class="n">optimizer</span><span class="p">)</span>
@ -519,13 +550,12 @@ This is not implemented yet. 😜</p>
<div class='section-link'>
<a href='#section-38'>#</a>
</div>
<h3>Basic english tokenizer</h3>
<p>We use character level tokenizer in this experiment.
You can switch by setting,</p>
<pre><code> 'tokenizer': 'basic_english',
</code></pre>
<h3>Basic english tokenizer</h3>
<p>We use character level tokenizer in this experiment. You can switch by setting,</p>
<pre class="lang-"> &#x27;tokenizer&#x27;: &#x27;basic_english&#x27;,
</pre>
<p>as the configurations dictionary when starting the experiment.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">150</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPClassificationConfigs</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
@ -550,6 +580,7 @@ You can switch by setting,</p>
<a href='#section-40'>#</a>
</div>
<h3>Character level tokenizer</h3>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">169</span><span class="k">def</span> <span class="nf">character_tokenizer</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="nb">str</span><span class="p">):</span></pre></div>
@ -571,7 +602,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-42'>#</a>
</div>
<p>Character level tokenizer configuration</p>
<p> Character level tokenizer configuration</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">176</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPClassificationConfigs</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">)</span>
@ -594,7 +626,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-44'>#</a>
</div>
<p>Get number of tokens</p>
<p> Get number of tokens</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">184</span><span class="nd">@option</span><span class="p">(</span><span class="n">NLPClassificationConfigs</span><span class="o">.</span><span class="n">n_tokens</span><span class="p">)</span>
@ -618,6 +651,7 @@ You can switch by setting,</p>
<a href='#section-46'>#</a>
</div>
<h2>Function to load data into batches</h2>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">192</span><span class="k">class</span> <span class="nc">CollateFunc</span><span class="p">:</span></pre></div>
@ -628,13 +662,19 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-47'>#</a>
</div>
<ul>
<li><code>tokenizer</code> is the tokenizer function</li>
<li><code>vocab</code> is the vocabulary</li>
<li><code>seq_len</code> is the length of the sequence</li>
<li><code>padding_token</code> is the token used for padding when the <code>seq_len</code> is larger than the text length</li>
<li><code>classifier_token</code> is the <code>[CLS]</code> token which we set at end of the input</li>
</ul>
<ul><li><code>tokenizer</code>
is the tokenizer function </li>
<li><code>vocab</code>
is the vocabulary </li>
<li><code>seq_len</code>
is the length of the sequence </li>
<li><code>padding_token</code>
is the token used for padding when the <code>seq_len</code>
is larger than the text length </li>
<li><code>classifier_token</code>
is the <code>[CLS]</code>
token which we set at end of the input</li></ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">197</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">tokenizer</span><span class="p">,</span> <span class="n">vocab</span><span class="p">:</span> <span class="n">Vocab</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">padding_token</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="n">classifier_token</span><span class="p">:</span> <span class="nb">int</span><span class="p">):</span></pre></div>
@ -660,9 +700,10 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-49'>#</a>
</div>
<ul>
<li><code>batch</code> is the batch of data collected by the <code>DataLoader</code></li>
</ul>
<ul><li><code>batch</code>
is the batch of data collected by the <code>DataLoader</code>
</li></ul>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">211</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">batch</span><span class="p">):</span></pre></div>
@ -673,7 +714,9 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-50'>#</a>
</div>
<p>Input data tensor, initialized with <code>padding_token</code></p>
<p>Input data tensor, initialized with <code>padding_token</code>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">217</span> <span class="n">data</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">full</span><span class="p">((</span><span class="bp">self</span><span class="o">.</span><span class="n">seq_len</span><span class="p">,</span> <span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">)),</span> <span class="bp">self</span><span class="o">.</span><span class="n">padding_token</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">long</span><span class="p">)</span></pre></div>
@ -684,7 +727,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-51'>#</a>
</div>
<p>Empty labels tensor</p>
<p>Empty labels tensor </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">219</span> <span class="n">labels</span> <span class="o">=</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="nb">len</span><span class="p">(</span><span class="n">batch</span><span class="p">),</span> <span class="n">dtype</span><span class="o">=</span><span class="n">torch</span><span class="o">.</span><span class="n">long</span><span class="p">)</span></pre></div>
@ -695,7 +739,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-52'>#</a>
</div>
<p>Loop through the samples</p>
<p>Loop through the samples </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">222</span> <span class="k">for</span> <span class="p">(</span><span class="n">i</span><span class="p">,</span> <span class="p">(</span><span class="n">_label</span><span class="p">,</span> <span class="n">_text</span><span class="p">))</span> <span class="ow">in</span> <span class="nb">enumerate</span><span class="p">(</span><span class="n">batch</span><span class="p">):</span></pre></div>
@ -706,7 +751,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-53'>#</a>
</div>
<p>Set the label</p>
<p>Set the label </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">224</span> <span class="n">labels</span><span class="p">[</span><span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="nb">int</span><span class="p">(</span><span class="n">_label</span><span class="p">)</span> <span class="o">-</span> <span class="mi">1</span></pre></div>
@ -717,7 +763,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-54'>#</a>
</div>
<p>Tokenize the input text</p>
<p>Tokenize the input text </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">226</span> <span class="n">_text</span> <span class="o">=</span> <span class="p">[</span><span class="bp">self</span><span class="o">.</span><span class="n">vocab</span><span class="p">[</span><span class="n">token</span><span class="p">]</span> <span class="k">for</span> <span class="n">token</span> <span class="ow">in</span> <span class="bp">self</span><span class="o">.</span><span class="n">tokenizer</span><span class="p">(</span><span class="n">_text</span><span class="p">)]</span></pre></div>
@ -728,7 +775,9 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-55'>#</a>
</div>
<p>Truncate upto <code>seq_len</code></p>
<p>Truncate upto <code>seq_len</code>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">228</span> <span class="n">_text</span> <span class="o">=</span> <span class="n">_text</span><span class="p">[:</span><span class="bp">self</span><span class="o">.</span><span class="n">seq_len</span><span class="p">]</span></pre></div>
@ -739,7 +788,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-56'>#</a>
</div>
<p>Transpose and add to data</p>
<p>Transpose and add to data </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">230</span> <span class="n">data</span><span class="p">[:</span><span class="nb">len</span><span class="p">(</span><span class="n">_text</span><span class="p">),</span> <span class="n">i</span><span class="p">]</span> <span class="o">=</span> <span class="n">data</span><span class="o">.</span><span class="n">new_tensor</span><span class="p">(</span><span class="n">_text</span><span class="p">)</span></pre></div>
@ -750,7 +800,9 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-57'>#</a>
</div>
<p>Set the final token in the sequence to <code>[CLS]</code></p>
<p>Set the final token in the sequence to <code>[CLS]</code>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">233</span> <span class="n">data</span><span class="p">[</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="p">:]</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">classifier_token</span></pre></div>
@ -761,7 +813,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-58'>#</a>
</div>
<p> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">236</span> <span class="k">return</span> <span class="n">data</span><span class="p">,</span> <span class="n">labels</span></pre></div>
@ -773,8 +826,12 @@ You can switch by setting,</p>
<a href='#section-59'>#</a>
</div>
<h3>AG News dataset</h3>
<p>This loads the AG News dataset and the set the values for
<code>n_classes</code>, <code>vocab</code>, <code>train_loader</code>, and <code>valid_loader</code>.</p>
<p>This loads the AG News dataset and the set the values for <code>n_classes</code>
, <code>vocab</code>
, <code>train_loader</code>
, and <code>valid_loader</code>
.</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">239</span><span class="nd">@option</span><span class="p">([</span><span class="n">NLPClassificationConfigs</span><span class="o">.</span><span class="n">n_classes</span><span class="p">,</span>
@ -789,7 +846,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-60'>#</a>
</div>
<p>Get training and validation datasets</p>
<p>Get training and validation datasets </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">252</span> <span class="n">train</span><span class="p">,</span> <span class="n">valid</span> <span class="o">=</span> <span class="n">torchtext</span><span class="o">.</span><span class="n">datasets</span><span class="o">.</span><span class="n">AG_NEWS</span><span class="p">(</span><span class="n">root</span><span class="o">=</span><span class="nb">str</span><span class="p">(</span><span class="n">lab</span><span class="o">.</span><span class="n">get_data_path</span><span class="p">()</span> <span class="o">/</span> <span class="s1">&#39;ag_news&#39;</span><span class="p">),</span> <span class="n">split</span><span class="o">=</span><span class="p">(</span><span class="s1">&#39;train&#39;</span><span class="p">,</span> <span class="s1">&#39;test&#39;</span><span class="p">))</span></pre></div>
@ -800,7 +858,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-61'>#</a>
</div>
<p>Load data to memory</p>
<p>Load data to memory </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">255</span> <span class="k">with</span> <span class="n">monit</span><span class="o">.</span><span class="n">section</span><span class="p">(</span><span class="s1">&#39;Load data&#39;</span><span class="p">):</span>
@ -812,7 +871,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-62'>#</a>
</div>
<p>Create <a href="../utils.html#map_style_dataset">map-style datasets</a></p>
<p>Create <a href="../utils.html#map_style_dataset">map-style datasets</a> </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">259</span> <span class="n">train</span><span class="p">,</span> <span class="n">valid</span> <span class="o">=</span> <span class="n">MapStyleDataset</span><span class="p">(</span><span class="n">train</span><span class="p">),</span> <span class="n">MapStyleDataset</span><span class="p">(</span><span class="n">valid</span><span class="p">)</span></pre></div>
@ -823,7 +883,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-63'>#</a>
</div>
<p>Get tokenizer</p>
<p>Get tokenizer </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">262</span> <span class="n">tokenizer</span> <span class="o">=</span> <span class="n">c</span><span class="o">.</span><span class="n">tokenizer</span></pre></div>
@ -834,7 +895,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-64'>#</a>
</div>
<p>Create a counter</p>
<p>Create a counter </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">265</span> <span class="n">counter</span> <span class="o">=</span> <span class="n">Counter</span><span class="p">()</span></pre></div>
@ -845,7 +907,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-65'>#</a>
</div>
<p>Collect tokens from training dataset</p>
<p>Collect tokens from training dataset </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">267</span> <span class="k">for</span> <span class="p">(</span><span class="n">label</span><span class="p">,</span> <span class="n">line</span><span class="p">)</span> <span class="ow">in</span> <span class="n">train</span><span class="p">:</span>
@ -857,7 +920,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-66'>#</a>
</div>
<p>Collect tokens from validation dataset</p>
<p>Collect tokens from validation dataset </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">270</span> <span class="k">for</span> <span class="p">(</span><span class="n">label</span><span class="p">,</span> <span class="n">line</span><span class="p">)</span> <span class="ow">in</span> <span class="n">valid</span><span class="p">:</span>
@ -869,7 +933,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-67'>#</a>
</div>
<p>Create vocabulary</p>
<p>Create vocabulary </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">273</span> <span class="n">vocab</span> <span class="o">=</span> <span class="n">Vocab</span><span class="p">(</span><span class="n">counter</span><span class="p">,</span> <span class="n">min_freq</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span></pre></div>
@ -880,7 +945,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-68'>#</a>
</div>
<p>Create training data loader</p>
<p>Create training data loader </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">276</span> <span class="n">train_loader</span> <span class="o">=</span> <span class="n">DataLoader</span><span class="p">(</span><span class="n">train</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
@ -892,7 +958,8 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-69'>#</a>
</div>
<p>Create validation data loader</p>
<p>Create validation data loader </p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">279</span> <span class="n">valid_loader</span> <span class="o">=</span> <span class="n">DataLoader</span><span class="p">(</span><span class="n">valid</span><span class="p">,</span> <span class="n">batch_size</span><span class="o">=</span><span class="n">c</span><span class="o">.</span><span class="n">batch_size</span><span class="p">,</span> <span class="n">shuffle</span><span class="o">=</span><span class="kc">True</span><span class="p">,</span>
@ -904,7 +971,12 @@ You can switch by setting,</p>
<div class='section-link'>
<a href='#section-70'>#</a>
</div>
<p>Return <code>n_classes</code>, <code>vocab</code>, <code>train_loader</code>, and <code>valid_loader</code></p>
<p>Return <code>n_classes</code>
, <code>vocab</code>
, <code>train_loader</code>
, and <code>valid_loader</code>
</p>
</div>
<div class='code'>
<div class="highlight"><pre><span class="lineno">283</span> <span class="k">return</span> <span class="mi">4</span><span class="p">,</span> <span class="n">vocab</span><span class="p">,</span> <span class="n">train_loader</span><span class="p">,</span> <span class="n">valid_loader</span></pre></div>
@ -915,24 +987,6 @@ You can switch by setting,</p>
<a href="https://labml.ai">labml.ai</a>
</div>
</div>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.4/MathJax.js?config=TeX-AMS_HTML">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
tex2jax: {
inlineMath: [ ['$','$'] ],
displayMath: [ ['$$','$$'] ],
processEscapes: true,
processEnvironments: true
},
// Center justify equations in code and markdown cells. Elsewhere
// we use CSS to left justify single line equations in code cells.
displayAlign: 'center',
"HTML-CSS": { fonts: ["TeX"] }
});
</script>
<script>
function handleImages() {
var images = document.querySelectorAll('p>img')