mirror of
				https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
				synced 2025-10-31 02:39:16 +08:00 
			
		
		
		
	__call__ -> forward
This commit is contained in:
		| @ -85,7 +85,7 @@ class GraphAttentionLayer(Module): | ||||
|         # Dropout layer to be applied for attention | ||||
|         self.dropout = nn.Dropout(dropout) | ||||
|  | ||||
|     def __call__(self, h: torch.Tensor, adj_mat: torch.Tensor): | ||||
|     def forward(self, h: torch.Tensor, adj_mat: torch.Tensor): | ||||
|         """ | ||||
|         * `h`, $\mathbf{h}$ is the input node embeddings of shape `[n_nodes, in_features]`. | ||||
|         * `adj_mat` is the adjacency matrix of shape `[n_nodes, n_nodes, n_heads]`. | ||||
|  | ||||
| @ -134,7 +134,7 @@ class GAT(Module): | ||||
|         # Dropout | ||||
|         self.dropout = nn.Dropout(dropout) | ||||
|  | ||||
|     def __call__(self, x: torch.Tensor, adj_mat: torch.Tensor): | ||||
|     def forward(self, x: torch.Tensor, adj_mat: torch.Tensor): | ||||
|         """ | ||||
|         * `x` is the features vectors of shape `[n_nodes, in_features]` | ||||
|         * `adj_mat` is the adjacency matrix of the form | ||||
|  | ||||
| @ -121,7 +121,7 @@ class GraphAttentionV2Layer(Module): | ||||
|         # Dropout layer to be applied for attention | ||||
|         self.dropout = nn.Dropout(dropout) | ||||
|  | ||||
|     def __call__(self, h: torch.Tensor, adj_mat: torch.Tensor): | ||||
|     def forward(self, h: torch.Tensor, adj_mat: torch.Tensor): | ||||
|         """ | ||||
|         * `h`, $\mathbf{h}$ is the input node embeddings of shape `[n_nodes, in_features]`. | ||||
|         * `adj_mat` is the adjacency matrix of shape `[n_nodes, n_nodes, n_heads]`. | ||||
|  | ||||
| @ -50,7 +50,7 @@ class GATv2(Module): | ||||
|         # Dropout | ||||
|         self.dropout = nn.Dropout(dropout) | ||||
|  | ||||
|     def __call__(self, x: torch.Tensor, adj_mat: torch.Tensor): | ||||
|     def forward(self, x: torch.Tensor, adj_mat: torch.Tensor): | ||||
|         """ | ||||
|         * `x` is the features vectors of shape `[n_nodes, in_features]` | ||||
|         * `adj_mat` is the adjacency matrix of the form | ||||
|  | ||||
| @ -22,7 +22,7 @@ class AutoregressiveModel(Module): | ||||
|         self.lstm = rnn_model | ||||
|         self.generator = nn.Linear(d_model, n_vocab) | ||||
|  | ||||
|     def __call__(self, x: torch.Tensor): | ||||
|     def forward(self, x: torch.Tensor): | ||||
|         x = self.src_embed(x) | ||||
|         # Embed the tokens (`src`) and run it through the the transformer | ||||
|         res, state = self.lstm(x) | ||||
|  | ||||
| @ -147,9 +147,9 @@ class HyperLSTMCell(Module): | ||||
|         self.layer_norm = nn.ModuleList([nn.LayerNorm(hidden_size) for _ in range(4)]) | ||||
|         self.layer_norm_c = nn.LayerNorm(hidden_size) | ||||
|  | ||||
|     def __call__(self, x: torch.Tensor, | ||||
|                  h: torch.Tensor, c: torch.Tensor, | ||||
|                  h_hat: torch.Tensor, c_hat: torch.Tensor): | ||||
|     def forward(self, x: torch.Tensor, | ||||
|                 h: torch.Tensor, c: torch.Tensor, | ||||
|                 h_hat: torch.Tensor, c_hat: torch.Tensor): | ||||
|         # $$ | ||||
|         # \hat{x}_t = \begin{pmatrix} | ||||
|         # h_{t-1} \\ | ||||
| @ -202,6 +202,7 @@ class HyperLSTM(Module): | ||||
|     """ | ||||
|     # HyperLSTM module | ||||
|     """ | ||||
|  | ||||
|     def __init__(self, input_size: int, hidden_size: int, hyper_size: int, n_z: int, n_layers: int): | ||||
|         """ | ||||
|         Create a network of `n_layers` of HyperLSTM. | ||||
| @ -220,8 +221,8 @@ class HyperLSTM(Module): | ||||
|                                    [HyperLSTMCell(hidden_size, hidden_size, hyper_size, n_z) for _ in | ||||
|                                     range(n_layers - 1)]) | ||||
|  | ||||
|     def __call__(self, x: torch.Tensor, | ||||
|                  state: Optional[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]] = None): | ||||
|     def forward(self, x: torch.Tensor, | ||||
|                 state: Optional[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]] = None): | ||||
|         """ | ||||
|         * `x` has shape `[n_steps, batch_size, input_size]` and | ||||
|         * `state` is a tuple of $h, c, \hat{h}, \hat{c}$. | ||||
|  | ||||
		Reference in New Issue
	
	Block a user
	 Varuna Jayasiri
					Varuna Jayasiri