diff --git a/docs/diffusion/ddpm/index.html b/docs/diffusion/ddpm/index.html index 13670185..da0dba1b 100644 --- a/docs/diffusion/ddpm/index.html +++ b/docs/diffusion/ddpm/index.html @@ -102,7 +102,7 @@ c-6,0,-10,-1,-12,-3s-194,-422,-194,-422s-65,47,-65,47z M834 80h400000v40h-400000z">x0,(1αtˉ)I)

where and

Reverse Process

The reverse process removes noise starting at for time steps.

-

are the parameters we train.

+

are the parameters we train.

Loss

We optimize the ELBO (from Jenson's inequality) on the negative log likelihood.

The loss can be rewritten as follows.

diff --git a/docs/sitemap.xml b/docs/sitemap.xml index 1869b1d7..e0cbfaa6 100644 --- a/docs/sitemap.xml +++ b/docs/sitemap.xml @@ -561,7 +561,7 @@ https://nn.labml.ai/transformers/models.html - 2022-06-28T16:30:00+00:00 + 2022-07-02T16:30:00+00:00 1.00 @@ -652,7 +652,7 @@ https://nn.labml.ai/transformers/basic/autoregressive_experiment.html - 2022-06-28T16:30:00+00:00 + 2022-07-02T16:30:00+00:00 1.00 @@ -813,7 +813,7 @@ https://nn.labml.ai/transformers/positional_encoding.html - 2021-10-21T16:30:00+00:00 + 2022-07-02T16:30:00+00:00 1.00 @@ -855,7 +855,7 @@ https://nn.labml.ai/transformers/mha.html - 2022-06-28T16:30:00+00:00 + 2022-07-02T16:30:00+00:00 1.00 diff --git a/labml_nn/diffusion/ddpm/__init__.py b/labml_nn/diffusion/ddpm/__init__.py index e4fc9684..228b494c 100644 --- a/labml_nn/diffusion/ddpm/__init__.py +++ b/labml_nn/diffusion/ddpm/__init__.py @@ -47,7 +47,7 @@ for $T$ time steps. \begin{align} \textcolor{lightgreen}{p_\theta}(x_{t-1} | x_t) &= \mathcal{N}\big(x_{t-1}; - \textcolor{lightgreen}{\mu_\theta}x_t, t), \textcolor{lightgreen}{\Sigma_\theta}(x_t, t)\big) \\ + \textcolor{lightgreen}{\mu_\theta}(x_t, t), \textcolor{lightgreen}{\Sigma_\theta}(x_t, t)\big) \\ \textcolor{lightgreen}{p_\theta}(x_{0:T}) &= \textcolor{lightgreen}{p_\theta}(x_T) \prod_{t = 1}^{T} \textcolor{lightgreen}{p_\theta}(x_{t-1} | x_t) \\ \textcolor{lightgreen}{p_\theta}(x_0) &= \int \textcolor{lightgreen}{p_\theta}(x_{0:T}) dx_{1:T} \end{align}