mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-15 02:07:56 +08:00
badgeg
This commit is contained in:
1
Makefile
1
Makefile
@ -26,6 +26,7 @@ docs: ## Render annotated HTML
|
||||
pylit --remove_empty_sections --title_md -t ../../pylit/templates/nn -d html -w labml_nn
|
||||
|
||||
pages: ## Copy to lab-ml site
|
||||
pylit --remove_empty_sections --title_md -t ../../pylit/templates/nn -d html labml_nn
|
||||
@cd ../pages; git pull
|
||||
cp -r html/* ../pages/
|
||||
|
||||
|
@ -11,12 +11,11 @@ We have implemented HyperLSTM introduced in paper
|
||||
[This blog post](https://blog.otoro.net/2016/09/28/hyper-networks/)
|
||||
by David Ha gives a good explanation of HyperNetworks.
|
||||
|
||||
[](https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/hypernetworks/experiment.ipynb)
|
||||
|
||||
We have an experiment that trains a HyperLSTM to predict text on Shakespear dataset.
|
||||
Here's the link to code: [experiment.py](experiment.html)
|
||||
Here's the link to code: [`experiment.py`](experiment.html)
|
||||
|
||||
This is the training results: [View Run](https://web.lab-ml.com/run?uuid=9e7f39e047e811ebbaff2b26e3148b3d).
|
||||
[](https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/hypernetworks/experiment.ipynb)
|
||||
[](https://web.lab-ml.com/run?uuid=9e7f39e047e811ebbaff2b26e3148b3d)
|
||||
|
||||
HyperNetworks uses a smaller network to generate weights of a larger network.
|
||||
There are two variants: static hyper-networks and dynamic hyper-networks.
|
||||
|
Reference in New Issue
Block a user