mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-11-01 03:43:09 +08:00
titles
This commit is contained in:
2
Makefile
2
Makefile
@ -22,7 +22,7 @@ uninstall: ## Uninstall
|
|||||||
pip uninstall labml_nn
|
pip uninstall labml_nn
|
||||||
|
|
||||||
docs: ## Render annotated HTML
|
docs: ## Render annotated HTML
|
||||||
python ../../pylit/pylit.py --remove_empty_sections -s ../../pylit/pylit_docs.css -t ../../pylit/template_docs.html -d html -w labml_nn
|
python ../../pylit/pylit.py --remove_empty_sections --title_md -s ../../pylit/pylit_docs.css -t ../../pylit/template_docs.html -d html -w labml_nn
|
||||||
|
|
||||||
pages: ## Copy to lab-ml site
|
pages: ## Copy to lab-ml site
|
||||||
@cd ../lab-ml.github.io; git pull
|
@cd ../lab-ml.github.io; git pull
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
# Capsule Networks
|
||||||
|
|
||||||
This is an implementation of [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
|
This is an implementation of [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
|
||||||
|
|
||||||
Unlike in other implementations of models, we've included a sample, because
|
Unlike in other implementations of models, we've included a sample, because
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
# Generative Adversarial Networks (GAN)
|
||||||
|
|
||||||
This is an implementation of
|
This is an implementation of
|
||||||
[Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).
|
[Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).
|
||||||
|
|
||||||
|
|||||||
@ -1,5 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
# Cycle GAN
|
# Cycle GAN
|
||||||
|
|
||||||
This is an implementation of paper
|
This is an implementation of paper
|
||||||
[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593).
|
[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593).
|
||||||
|
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
# Deep Convolutional Generative Adversarial Networks (DCGAN)
|
||||||
|
|
||||||
This is an implementation of paper
|
This is an implementation of paper
|
||||||
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434).
|
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434).
|
||||||
|
|
||||||
|
|||||||
@ -1,3 +1,7 @@
|
|||||||
|
"""
|
||||||
|
# Generative Adversarial Networks experiment with MNIST
|
||||||
|
"""
|
||||||
|
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|||||||
@ -1,3 +1,7 @@
|
|||||||
|
"""
|
||||||
|
# Long Short-Term Memory (LSTM)
|
||||||
|
"""
|
||||||
|
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
# Recurrent Highway Networks
|
||||||
|
|
||||||
This is an implementation of [Recurrent Highway Networks](https://arxiv.org/abs/1607.03474).
|
This is an implementation of [Recurrent Highway Networks](https://arxiv.org/abs/1607.03474).
|
||||||
"""
|
"""
|
||||||
from typing import Optional
|
from typing import Optional
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
# Proximal Policy Optimization (PPO)
|
||||||
|
|
||||||
This is a an implementation of [Proximal Policy Optimization - PPO](https://arxiv.org/abs/1707.06347).
|
This is a an implementation of [Proximal Policy Optimization - PPO](https://arxiv.org/abs/1707.06347).
|
||||||
|
|
||||||
You can find an experiment that uses it [here](experiment.html).
|
You can find an experiment that uses it [here](experiment.html).
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
# PPO Experiment with Atari Breakout
|
||||||
|
|
||||||
This experiment runs PPO Atari Breakout game on OpenAI Gym.
|
This experiment runs PPO Atari Breakout game on OpenAI Gym.
|
||||||
It runs the [game environments on multiple processes](game.html) to sample efficiently.
|
It runs the [game environments on multiple processes](game.html) to sample efficiently.
|
||||||
"""
|
"""
|
||||||
|
|||||||
@ -1,4 +1,6 @@
|
|||||||
"""
|
"""
|
||||||
|
# Generalized Advantage Estimation (GAE)
|
||||||
|
|
||||||
This is an implementation of paper [Generalized Advantage Estimation](https://arxiv.org/abs/1506.02438).
|
This is an implementation of paper [Generalized Advantage Estimation](https://arxiv.org/abs/1506.02438).
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|||||||
@ -1,3 +1,6 @@
|
|||||||
|
"""
|
||||||
|
# Atari wrapper with multi-processing
|
||||||
|
"""
|
||||||
import multiprocessing
|
import multiprocessing
|
||||||
import multiprocessing.connection
|
import multiprocessing.connection
|
||||||
|
|
||||||
|
|||||||
@ -1,5 +1,5 @@
|
|||||||
"""
|
"""
|
||||||
# SketchRNN
|
# Sketch RNN
|
||||||
|
|
||||||
This is an annotated implementation of the paper
|
This is an annotated implementation of the paper
|
||||||
[A Neural Representation of Sketch Drawings](https://arxiv.org/abs/1704.03477).
|
[A Neural Representation of Sketch Drawings](https://arxiv.org/abs/1704.03477).
|
||||||
|
|||||||
@ -1,3 +1,6 @@
|
|||||||
|
"""
|
||||||
|
# Configurable Transformer Components
|
||||||
|
"""
|
||||||
import copy
|
import copy
|
||||||
|
|
||||||
import torch.nn as nn
|
import torch.nn as nn
|
||||||
|
|||||||
@ -1,3 +1,6 @@
|
|||||||
|
"""
|
||||||
|
# Label Smoothing Loss
|
||||||
|
"""
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
|||||||
@ -1,3 +1,6 @@
|
|||||||
|
"""
|
||||||
|
# Transformer Models
|
||||||
|
"""
|
||||||
import math
|
import math
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
|||||||
Reference in New Issue
Block a user