This commit is contained in:
Varuna Jayasiri
2020-10-23 15:06:55 +05:30
parent 19f3daa76d
commit 6b4b9b2e39
16 changed files with 37 additions and 2 deletions

View File

@ -22,7 +22,7 @@ uninstall: ## Uninstall
pip uninstall labml_nn pip uninstall labml_nn
docs: ## Render annotated HTML docs: ## Render annotated HTML
python ../../pylit/pylit.py --remove_empty_sections -s ../../pylit/pylit_docs.css -t ../../pylit/template_docs.html -d html -w labml_nn python ../../pylit/pylit.py --remove_empty_sections --title_md -s ../../pylit/pylit_docs.css -t ../../pylit/template_docs.html -d html -w labml_nn
pages: ## Copy to lab-ml site pages: ## Copy to lab-ml site
@cd ../lab-ml.github.io; git pull @cd ../lab-ml.github.io; git pull

View File

@ -1,4 +1,6 @@
""" """
# Capsule Networks
This is an implementation of [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829). This is an implementation of [Dynamic Routing Between Capsules](https://arxiv.org/abs/1710.09829).
Unlike in other implementations of models, we've included a sample, because Unlike in other implementations of models, we've included a sample, because

View File

@ -1,4 +1,6 @@
""" """
# Generative Adversarial Networks (GAN)
This is an implementation of This is an implementation of
[Generative Adversarial Networks](https://arxiv.org/abs/1406.2661). [Generative Adversarial Networks](https://arxiv.org/abs/1406.2661).

View File

@ -1,5 +1,6 @@
""" """
# Cycle GAN # Cycle GAN
This is an implementation of paper This is an implementation of paper
[Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593). [Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks](https://arxiv.org/abs/1703.10593).

View File

@ -1,4 +1,6 @@
""" """
# Deep Convolutional Generative Adversarial Networks (DCGAN)
This is an implementation of paper This is an implementation of paper
[Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434). [Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks](https://arxiv.org/abs/1511.06434).

View File

@ -1,3 +1,7 @@
"""
# Generative Adversarial Networks experiment with MNIST
"""
from typing import Optional from typing import Optional
import torch import torch

View File

@ -1,3 +1,7 @@
"""
# Long Short-Term Memory (LSTM)
"""
from typing import Optional, Tuple from typing import Optional, Tuple
import torch import torch

View File

@ -1,4 +1,6 @@
""" """
# Recurrent Highway Networks
This is an implementation of [Recurrent Highway Networks](https://arxiv.org/abs/1607.03474). This is an implementation of [Recurrent Highway Networks](https://arxiv.org/abs/1607.03474).
""" """
from typing import Optional from typing import Optional

View File

@ -1,4 +1,6 @@
""" """
# Proximal Policy Optimization (PPO)
This is a an implementation of [Proximal Policy Optimization - PPO](https://arxiv.org/abs/1707.06347). This is a an implementation of [Proximal Policy Optimization - PPO](https://arxiv.org/abs/1707.06347).
You can find an experiment that uses it [here](experiment.html). You can find an experiment that uses it [here](experiment.html).

View File

@ -1,4 +1,6 @@
""" """
# PPO Experiment with Atari Breakout
This experiment runs PPO Atari Breakout game on OpenAI Gym. This experiment runs PPO Atari Breakout game on OpenAI Gym.
It runs the [game environments on multiple processes](game.html) to sample efficiently. It runs the [game environments on multiple processes](game.html) to sample efficiently.
""" """

View File

@ -1,4 +1,6 @@
""" """
# Generalized Advantage Estimation (GAE)
This is an implementation of paper [Generalized Advantage Estimation](https://arxiv.org/abs/1506.02438). This is an implementation of paper [Generalized Advantage Estimation](https://arxiv.org/abs/1506.02438).
""" """

View File

@ -1,3 +1,6 @@
"""
# Atari wrapper with multi-processing
"""
import multiprocessing import multiprocessing
import multiprocessing.connection import multiprocessing.connection

View File

@ -1,3 +1,6 @@
"""
# Configurable Transformer Components
"""
import copy import copy
import torch.nn as nn import torch.nn as nn

View File

@ -1,3 +1,6 @@
"""
# Label Smoothing Loss
"""
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
import torch import torch

View File

@ -1,3 +1,6 @@
"""
# Transformer Models
"""
import math import math
import torch import torch