mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-11-01 20:28:41 +08:00
fix dependecies and include relative attention
This commit is contained in:
@ -5,11 +5,11 @@ import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
from common.models import clone_module_list
|
||||
from labml.configs import BaseConfigs, option
|
||||
from labml.configs import BaseConfigs, option, calculate
|
||||
from labml.helpers.pytorch.module import Module
|
||||
from transformer.models.multi_headed_attention import MultiHeadedAttention
|
||||
from transformers.mha import MultiHeadAttention
|
||||
from transformers.positional_encoding import PositionalEncoding, get_positional_encoding
|
||||
from transformers.utils import clone_module_list
|
||||
|
||||
|
||||
class EmbeddingsWithPositionalEncoding(Module):
|
||||
@ -53,8 +53,8 @@ class FeedForward(Module):
|
||||
class TransformerLayer(Module):
|
||||
def __init__(self, *,
|
||||
d_model: int,
|
||||
self_attn: MultiHeadedAttention,
|
||||
src_attn: MultiHeadedAttention = None,
|
||||
self_attn: MultiHeadAttention,
|
||||
src_attn: MultiHeadAttention = None,
|
||||
feed_forward: FeedForward,
|
||||
dropout_prob: float):
|
||||
super().__init__()
|
||||
@ -161,9 +161,9 @@ class TransformerConfigs(BaseConfigs):
|
||||
n_src_vocab: int
|
||||
n_tgt_vocab: int
|
||||
|
||||
encoder_attn: MultiHeadedAttention = 'mha'
|
||||
decoder_attn: MultiHeadedAttention = 'mha'
|
||||
decoder_mem_attn: MultiHeadedAttention = 'mha'
|
||||
encoder_attn: MultiHeadAttention = 'mha'
|
||||
decoder_attn: MultiHeadAttention = 'mha'
|
||||
decoder_mem_attn: MultiHeadAttention = 'mha'
|
||||
feed_forward: FeedForward
|
||||
|
||||
encoder_layer: TransformerLayer = 'normal'
|
||||
@ -185,19 +185,25 @@ def _feed_forward(c: TransformerConfigs):
|
||||
return FeedForward(c.d_model, c.d_ff, c.dropout)
|
||||
|
||||
|
||||
@option(TransformerConfigs.encoder_attn, 'mha')
|
||||
def _encoder_mha(c: TransformerConfigs):
|
||||
return MultiHeadedAttention(c.n_heads, c.d_model)
|
||||
### MHA
|
||||
def _mha(c: TransformerConfigs):
|
||||
return MultiHeadAttention(c.n_heads, c.d_model)
|
||||
|
||||
|
||||
@option(TransformerConfigs.decoder_attn, 'mha')
|
||||
def _decoder_mha(c: TransformerConfigs):
|
||||
return MultiHeadedAttention(c.n_heads, c.d_model)
|
||||
calculate(TransformerConfigs.encoder_attn, 'mha', _mha)
|
||||
calculate(TransformerConfigs.decoder_attn, 'mha', _mha)
|
||||
calculate(TransformerConfigs.decoder_mem_attn, 'mha', _mha)
|
||||
|
||||
|
||||
@option(TransformerConfigs.decoder_mem_attn, 'mha')
|
||||
def _decoder_mem_mha(c: TransformerConfigs):
|
||||
return MultiHeadedAttention(c.n_heads, c.d_model)
|
||||
### Relative MHA
|
||||
def _relative_mha(c: TransformerConfigs):
|
||||
from transformers.relative_mha import RelativeMultiHeadAttention
|
||||
return RelativeMultiHeadAttention(c.n_heads, c.d_model)
|
||||
|
||||
|
||||
calculate(TransformerConfigs.encoder_attn, 'relative', _relative_mha)
|
||||
calculate(TransformerConfigs.decoder_attn, 'relative', _relative_mha)
|
||||
calculate(TransformerConfigs.decoder_mem_attn, 'relative', _relative_mha)
|
||||
|
||||
|
||||
@option(TransformerConfigs.encoder_layer, 'normal')
|
||||
@ -229,6 +235,7 @@ def _generator(c: TransformerConfigs):
|
||||
return Generator(c.n_tgt_vocab, c.d_model)
|
||||
|
||||
|
||||
### Positional Embeddings
|
||||
@option(TransformerConfigs.src_embed, 'fixed_pos')
|
||||
def _src_embed_with_positional(c: TransformerConfigs):
|
||||
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_src_vocab)
|
||||
@ -239,6 +246,7 @@ def _tgt_embed_with_positional(c: TransformerConfigs):
|
||||
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_tgt_vocab)
|
||||
|
||||
|
||||
### Learned Positional Embeddings
|
||||
@option(TransformerConfigs.src_embed, 'learned_pos')
|
||||
def _src_embed_with_learned_positional(c: TransformerConfigs):
|
||||
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_src_vocab)
|
||||
@ -249,6 +257,16 @@ def _tgt_embed_with_learned_positional(c: TransformerConfigs):
|
||||
return EmbeddingsWithLearnedPositionalEncoding(c.d_model, c.n_tgt_vocab)
|
||||
|
||||
|
||||
### No Positional Embeddings
|
||||
@option(TransformerConfigs.src_embed, 'no_pos')
|
||||
def _src_embed_without_positional(c: TransformerConfigs):
|
||||
return nn.Embedding(c.n_src_vocab, c.d_model)
|
||||
|
||||
|
||||
@option(TransformerConfigs.tgt_embed, 'no_pos')
|
||||
def _tgt_embed_without_positional(c: TransformerConfigs):
|
||||
return nn.Embedding(c.n_tgt_vocab, c.d_model)
|
||||
|
||||
|
||||
@option(TransformerConfigs.encoder_decoder, 'normal')
|
||||
def _encoder_decoder(c: TransformerConfigs):
|
||||
|
||||
Reference in New Issue
Block a user