mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-10-30 02:08:50 +08:00
basic transformer
This commit is contained in:
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@ -0,0 +1 @@
|
|||||||
|
__pycache__
|
||||||
232
transformers/__init__.py
Normal file
232
transformers/__init__.py
Normal file
@ -0,0 +1,232 @@
|
|||||||
|
import copy
|
||||||
|
import math
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
|
||||||
|
from common.models import clone_module_list
|
||||||
|
from labml.configs import BaseConfigs, option
|
||||||
|
from labml.helpers.pytorch.module import Module
|
||||||
|
from transformer.models.multi_headed_attention import MultiHeadedAttention
|
||||||
|
from transformers.positional_encoding import PositionalEncoding, get_positional_encoding
|
||||||
|
|
||||||
|
|
||||||
|
class EmbeddingsWithPositionalEncoding(Module):
|
||||||
|
def __init__(self, d_model: int, n_vocab: int, max_len: int = 5000):
|
||||||
|
super().__init__()
|
||||||
|
self.linear = nn.Embedding(n_vocab, d_model)
|
||||||
|
self.d_model = d_model
|
||||||
|
self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len))
|
||||||
|
|
||||||
|
def __call__(self, x: torch.Tensor):
|
||||||
|
pe = self.positional_encodings[:x.shape[0]].requires_grad_(False)
|
||||||
|
return self.linear(x) * math.sqrt(self.d_model) + pe
|
||||||
|
|
||||||
|
|
||||||
|
class FeedForward(Module):
|
||||||
|
def __init__(self, d_model: int, d_ff: int, dropout: float = 0.1):
|
||||||
|
super().__init__()
|
||||||
|
self.layer1 = nn.Linear(d_model, d_ff)
|
||||||
|
self.layer2 = nn.Linear(d_ff, d_model)
|
||||||
|
self.dropout = nn.Dropout(dropout)
|
||||||
|
|
||||||
|
def __call__(self, x: torch.Tensor):
|
||||||
|
x = self.layer1(x)
|
||||||
|
x = F.relu(x)
|
||||||
|
x = self.dropout(x)
|
||||||
|
return self.layer2(x)
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerLayer(Module):
|
||||||
|
def __init__(self, *,
|
||||||
|
d_model: int,
|
||||||
|
self_attn: MultiHeadedAttention,
|
||||||
|
src_attn: MultiHeadedAttention = None,
|
||||||
|
feed_forward: FeedForward,
|
||||||
|
dropout_prob: float):
|
||||||
|
super().__init__()
|
||||||
|
self.size = d_model
|
||||||
|
self.self_attn = self_attn
|
||||||
|
self.src_attn = src_attn
|
||||||
|
self.feed_forward = feed_forward
|
||||||
|
self.dropout = nn.Dropout(dropout_prob)
|
||||||
|
self.norm_self_attn = nn.LayerNorm([d_model])
|
||||||
|
if self.src_attn is not None:
|
||||||
|
self.norm_src_attn = nn.LayerNorm([d_model])
|
||||||
|
self.norm_ff = nn.LayerNorm([d_model])
|
||||||
|
|
||||||
|
def __call__(self, *,
|
||||||
|
x: torch.Tensor,
|
||||||
|
mask: torch.Tensor,
|
||||||
|
src: torch.Tensor = None,
|
||||||
|
src_mask: torch.Tensor = None):
|
||||||
|
z = self.norm_self_attn(x)
|
||||||
|
attn_self = self.self_attn(query=z, key=z, value=z, mask=mask)
|
||||||
|
x = x + self.dropout(attn_self)
|
||||||
|
|
||||||
|
if src is not None:
|
||||||
|
z = self.norm_src_attn(x)
|
||||||
|
attn_src = self.src_attn(query=z, key=src, value=src, mask=src_mask)
|
||||||
|
x = x + self.dropout(attn_src)
|
||||||
|
|
||||||
|
z = self.norm_ff(x)
|
||||||
|
ff = self.feed_forward(z)
|
||||||
|
x = x + self.dropout(ff)
|
||||||
|
|
||||||
|
# guard(x.shape, attn_self.shape, attn_src.shape, ff.shape,
|
||||||
|
# '_batch_size', '_seq_len', 'd_model')
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class Encoder(Module):
|
||||||
|
def __init__(self, layer: TransformerLayer, n_layers: int):
|
||||||
|
super().__init__()
|
||||||
|
self.layers = clone_module_list(layer, n_layers)
|
||||||
|
self.norm = nn.LayerNorm([layer.size])
|
||||||
|
|
||||||
|
def __call__(self, x: torch.Tensor, mask: torch.Tensor):
|
||||||
|
for layer in self.layers:
|
||||||
|
x = layer(x=x, mask=mask)
|
||||||
|
return self.norm(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Decoder(Module):
|
||||||
|
def __init__(self, layer: TransformerLayer, n_layers: int):
|
||||||
|
super().__init__()
|
||||||
|
self.layers = clone_module_list(layer, n_layers)
|
||||||
|
self.norm = nn.LayerNorm([layer.size])
|
||||||
|
|
||||||
|
def __call__(self, x, memory, src_mask, tgt_mask):
|
||||||
|
for layer in self.layers:
|
||||||
|
x = layer(x=x, mask=tgt_mask, src=memory, src_mask=src_mask)
|
||||||
|
return self.norm(x)
|
||||||
|
|
||||||
|
|
||||||
|
class Generator(Module):
|
||||||
|
def __init__(self, n_vocab: int, d_model: int):
|
||||||
|
super().__init__()
|
||||||
|
self.projection = nn.Linear(d_model, n_vocab)
|
||||||
|
|
||||||
|
def __call__(self, x):
|
||||||
|
return F.log_softmax(self.projection(x), dim=-1)
|
||||||
|
|
||||||
|
|
||||||
|
class EncoderDecoder(Module):
|
||||||
|
def __init__(self, encoder: Encoder, decoder: Decoder, src_embed: Module, tgt_embed: Module, generator: Module):
|
||||||
|
super().__init__()
|
||||||
|
self.encoder = encoder
|
||||||
|
self.decoder = decoder
|
||||||
|
self.src_embed = src_embed
|
||||||
|
self.tgt_embed = tgt_embed
|
||||||
|
self.generator = generator
|
||||||
|
|
||||||
|
# This was important from their code.
|
||||||
|
# Initialize parameters with Glorot / fan_avg.
|
||||||
|
for p in self.parameters():
|
||||||
|
if p.dim() > 1:
|
||||||
|
nn.init.xavier_uniform_(p)
|
||||||
|
|
||||||
|
def __call__(self, src: torch.Tensor, tgt: torch.Tensor, src_mask: torch.Tensor,
|
||||||
|
tgt_mask: torch.Tensor):
|
||||||
|
return self.decode(self.encode(src, src_mask), src_mask,
|
||||||
|
tgt, tgt_mask)
|
||||||
|
|
||||||
|
def encode(self, src: torch.Tensor, src_mask: torch.Tensor):
|
||||||
|
return self.encoder(self.src_embed(src), src_mask)
|
||||||
|
|
||||||
|
def decode(self, memory: torch.Tensor, src_mask: torch.Tensor, tgt: torch.Tensor, tgt_mask: torch.Tensor):
|
||||||
|
return self.decoder(self.tgt_embed(tgt), memory, src_mask, tgt_mask)
|
||||||
|
|
||||||
|
|
||||||
|
class TransformerConfigs(BaseConfigs):
|
||||||
|
n_heads: int = 8
|
||||||
|
d_model: int = 512
|
||||||
|
n_layers: int = 6
|
||||||
|
d_ff: int = 2048
|
||||||
|
dropout: float = 0.1
|
||||||
|
n_src_vocab: int
|
||||||
|
n_tgt_vocab: int
|
||||||
|
|
||||||
|
encoder_attn: MultiHeadedAttention = 'mha'
|
||||||
|
decoder_attn: MultiHeadedAttention = 'mha'
|
||||||
|
decoder_mem_attn: MultiHeadedAttention = 'mha'
|
||||||
|
feed_forward: FeedForward
|
||||||
|
|
||||||
|
encoder_layer: TransformerLayer = 'normal'
|
||||||
|
decoder_layer: TransformerLayer = 'normal'
|
||||||
|
|
||||||
|
encoder: Encoder = 'normal'
|
||||||
|
decoder: Decoder = 'normal'
|
||||||
|
|
||||||
|
src_embed: Module = 'fixed_pos'
|
||||||
|
tgt_embed: Module = 'fixed_pos'
|
||||||
|
|
||||||
|
generator: Generator = 'default'
|
||||||
|
|
||||||
|
encoder_decoder: EncoderDecoder
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.feed_forward, 'default')
|
||||||
|
def _feed_forward(c: TransformerConfigs):
|
||||||
|
return FeedForward(c.d_model, c.d_ff, c.dropout)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.encoder_attn, 'mha')
|
||||||
|
def _encoder_mha(c: TransformerConfigs):
|
||||||
|
return MultiHeadedAttention(c.n_heads, c.d_model)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.decoder_attn, 'mha')
|
||||||
|
def _decoder_mha(c: TransformerConfigs):
|
||||||
|
return MultiHeadedAttention(c.n_heads, c.d_model)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.decoder_mem_attn, 'mha')
|
||||||
|
def _decoder_mem_mha(c: TransformerConfigs):
|
||||||
|
return MultiHeadedAttention(c.n_heads, c.d_model)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.encoder_layer, 'normal')
|
||||||
|
def _encoder_layer(c: TransformerConfigs):
|
||||||
|
return TransformerLayer(d_model=c.d_model, self_attn=c.encoder_attn,
|
||||||
|
src_attn=None, feed_forward=copy.deepcopy(c.feed_forward),
|
||||||
|
dropout_prob=c.dropout)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.decoder_layer, 'normal')
|
||||||
|
def _decoder_layer(c: TransformerConfigs):
|
||||||
|
return TransformerLayer(d_model=c.d_model, self_attn=c.decoder_attn,
|
||||||
|
src_attn=c.decoder_mem_attn, feed_forward=copy.deepcopy(c.feed_forward),
|
||||||
|
dropout_prob=c.dropout)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.encoder, 'normal')
|
||||||
|
def _encoder(c: TransformerConfigs):
|
||||||
|
return Encoder(c.encoder_layer, c.n_layers)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.decoder, 'normal')
|
||||||
|
def _decoder(c: TransformerConfigs):
|
||||||
|
return Decoder(c.decoder_layer, c.n_layers)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.generator, 'default')
|
||||||
|
def _generator(c: TransformerConfigs):
|
||||||
|
return Generator(c.n_tgt_vocab, c.d_model)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.src_embed, 'fixed_pos')
|
||||||
|
def _src_embed_with_positional(c: TransformerConfigs):
|
||||||
|
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_src_vocab)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.tgt_embed, 'fixed_pos')
|
||||||
|
def _tgt_embed_with_positional(c: TransformerConfigs):
|
||||||
|
return EmbeddingsWithPositionalEncoding(c.d_model, c.n_tgt_vocab)
|
||||||
|
|
||||||
|
|
||||||
|
@option(TransformerConfigs.encoder_decoder, 'normal')
|
||||||
|
def _encoder_decoder(c: TransformerConfigs):
|
||||||
|
return EncoderDecoder(c.encoder, c.decoder, c.src_embed, c.tgt_embed, c.generator)
|
||||||
59
transformers/label_smoothing_loss.py
Normal file
59
transformers/label_smoothing_loss.py
Normal file
@ -0,0 +1,59 @@
|
|||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from labml.helpers.pytorch.module import Module
|
||||||
|
|
||||||
|
|
||||||
|
class LabelSmoothingLoss(Module):
|
||||||
|
def __init__(self, size: int, padding_idx: int, smoothing: float = 0.0):
|
||||||
|
super().__init__()
|
||||||
|
self.loss = nn.KLDivLoss(reduction='sum')
|
||||||
|
self.padding_idx = padding_idx
|
||||||
|
self.confidence = 1.0 - smoothing
|
||||||
|
self.smoothing = smoothing
|
||||||
|
self.size = size
|
||||||
|
self.true_dist = None
|
||||||
|
|
||||||
|
def __call__(self, x: torch.Tensor, target: torch.Tensor):
|
||||||
|
assert x.size(1) == self.size
|
||||||
|
true_dist = x.clone()
|
||||||
|
true_dist.fill_(self.smoothing / (self.size - 2))
|
||||||
|
true_dist.scatter_(1, target.unsqueeze(1), self.confidence)
|
||||||
|
true_dist[:, self.padding_idx] = 0
|
||||||
|
mask = torch.nonzero(target == self.padding_idx, as_tuple=False)
|
||||||
|
if mask.dim() > 0:
|
||||||
|
true_dist.index_fill_(0, mask.squeeze(), 0.0)
|
||||||
|
self.true_dist = true_dist
|
||||||
|
return self.loss(x, true_dist.detach())
|
||||||
|
|
||||||
|
|
||||||
|
def _test_label_smoothing():
|
||||||
|
smooth_loss = LabelSmoothingLoss(5, 0, 0.4)
|
||||||
|
predict = torch.tensor([[0, 0.2, 0.7, 0.1, 0],
|
||||||
|
[0, 0.2, 0.7, 0.1, 0],
|
||||||
|
[0, 0.2, 0.7, 0.1, 0]], dtype=torch.float)
|
||||||
|
_ = smooth_loss(predict.log(),
|
||||||
|
torch.tensor([2, 1, 0], dtype=torch.long))
|
||||||
|
|
||||||
|
# Show the target distributions expected by the system.
|
||||||
|
plt.imshow(smooth_loss.true_dist)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
smooth_loss = LabelSmoothingLoss(5, 0, 0.1)
|
||||||
|
|
||||||
|
def loss_sample(x):
|
||||||
|
d = x + 3 * 1
|
||||||
|
predict2 = torch.tensor([[0, x / d, 1 / d, 1 / d, 1 / d],
|
||||||
|
], dtype=torch.float)
|
||||||
|
# print(predict)
|
||||||
|
return smooth_loss(predict2.log(),
|
||||||
|
torch.tensor([1], dtype=torch.long)).item()
|
||||||
|
|
||||||
|
plt.plot(np.arange(1, 100), [loss_sample(x) for x in range(1, 100)])
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
_test_label_smoothing()
|
||||||
47
transformers/positional_encoding.py
Normal file
47
transformers/positional_encoding.py
Normal file
@ -0,0 +1,47 @@
|
|||||||
|
import math
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from labml.helpers.pytorch.module import Module
|
||||||
|
|
||||||
|
|
||||||
|
class PositionalEncoding(Module):
|
||||||
|
def __init__(self, d_model: int, dropout_prob: float, max_len: int = 5000):
|
||||||
|
super().__init__()
|
||||||
|
self.dropout = nn.Dropout(dropout_prob)
|
||||||
|
|
||||||
|
self.register_buffer('positional_encodings', get_positional_encoding(d_model, max_len))
|
||||||
|
|
||||||
|
def __call__(self, x: torch.Tensor):
|
||||||
|
pe = self.positional_encodings[:x.shape[0]].detach().requires_grad_(False)
|
||||||
|
x = x + pe
|
||||||
|
x = self.dropout(x)
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
def get_positional_encoding(d_model: int, max_len: int = 5000):
|
||||||
|
encodings = torch.zeros(max_len, d_model)
|
||||||
|
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
||||||
|
two_i = torch.arange(0, d_model, 2, dtype=torch.float32)
|
||||||
|
div_term = torch.exp(two_i * -(math.log(10000.0) / d_model))
|
||||||
|
encodings[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
encodings[:, 1::2] = torch.cos(position * div_term)
|
||||||
|
encodings = encodings.unsqueeze(1).requires_grad_(False)
|
||||||
|
|
||||||
|
return encodings
|
||||||
|
|
||||||
|
|
||||||
|
def _test_positional_encoding():
|
||||||
|
plt.figure(figsize=(15, 5))
|
||||||
|
pe = get_positional_encoding(20, 100)
|
||||||
|
plt.plot(np.arange(100), pe[:, 0, 4:8].numpy())
|
||||||
|
plt.legend(["dim %d" % p for p in [4, 5, 6, 7]])
|
||||||
|
plt.title("Positional encoding")
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
_test_positional_encoding()
|
||||||
Reference in New Issue
Block a user