unoptimized adam

This commit is contained in:
Varuna Jayasiri
2020-12-10 10:50:18 +05:30
parent 1f75f42fb2
commit 4d58757671
6 changed files with 59 additions and 17 deletions

View File

@ -53,9 +53,11 @@ class Adam(GenericAdaptiveOptimizer):
We extend the class `GenericAdaptiveOptimizer` defined in [`__init__.py`](index.html)
to implement the Adam optimizer.
"""
def __init__(self, params,
lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-16,
weight_decay: WeightDecay = WeightDecay(),
optimized_update: bool = True,
defaults: Optional[Dict[str, Any]] = None):
"""
### Initialize the optimizer
@ -63,8 +65,10 @@ class Adam(GenericAdaptiveOptimizer):
* `params` is the list of parameters
* `lr` is the learning rate $\alpha$
* `betas` is a tuple of ($\beta_1$, $\beta_2$)
* `eps` is $\hat{\epsilon}$
* `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
* `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
* 'optimized_update' is a flag whether to optimize the bias correction of the second moment
by doing it after adding $\epsilon$
* `defaults` is a dictionary of default for group values.
This is useful when you want to extend the class `Adam`.
"""
@ -73,6 +77,7 @@ class Adam(GenericAdaptiveOptimizer):
super().__init__(params, defaults, lr, betas, eps)
self.weight_decay = weight_decay
self.optimized_update = optimized_update
def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
"""
@ -163,13 +168,23 @@ class Adam(GenericAdaptiveOptimizer):
# Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$
bias_correction2 = 1 - beta2 ** state['step']
# $\sqrt{v_t} + \epsilon$
if self.optimized_update:
# $\sqrt{v_t} + \hat{\epsilon}$
denominator = v.sqrt().add_(group['eps'])
# $\alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
step_size = self.get_lr(state, group) * math.sqrt(bias_correction2) / bias_correction1
# $\theta_t \leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
# \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
param.data.addcdiv_(m, denominator, value=-step_size)
else:
# $\frac{\sqrt{v_t}}{\sqrt{1-\beta_2^t}} + \epsilon$
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
# $\frac{\alpha}{1-\beta_1^t}$
step_size = self.get_lr(state, group) / bias_correction1
# $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot
# \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$
param.data.addcdiv_(m, denominator, value=-step_size)
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
"""

View File

@ -13,10 +13,12 @@ from labml_nn.optimizers.amsgrad import AMSGrad
class AdamWarmup(AMSGrad):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay: WeightDecay = WeightDecay(), amsgrad=False, warmup=0, defaults=None):
weight_decay: WeightDecay = WeightDecay(),
optimized_update: bool = True,
amsgrad=False, warmup=0, defaults=None):
defaults = {} if defaults is None else defaults
defaults.update(dict(warmup=warmup))
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, defaults)
super().__init__(params, lr, betas, eps, weight_decay, optimized_update, amsgrad, defaults)
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):
if group['warmup'] > state['step']:

View File

@ -33,7 +33,9 @@ class AMSGrad(Adam):
defined in [`__init__.py`](index.html).
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay: WeightDecay = WeightDecay(), amsgrad=True, defaults=None):
weight_decay: WeightDecay = WeightDecay(),
optimized_update: bool = True,
amsgrad=True, defaults=None):
"""
### Initialize the optimizer
@ -49,7 +51,7 @@ class AMSGrad(Adam):
defaults = {} if defaults is None else defaults
defaults.update(dict(amsgrad=amsgrad))
super().__init__(params, lr, betas, eps, weight_decay, defaults)
super().__init__(params, lr, betas, eps, weight_decay, optimized_update, defaults)
def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
"""

View File

@ -20,6 +20,7 @@ class OptimizerConfigs(BaseConfigs):
weight_decouple: bool = True
weight_decay: float = 0.0
weight_decay_absolute: bool = False
optimized_adam_update: bool = True
parameters: any
@ -58,11 +59,13 @@ def _adam_optimizer(c: OptimizerConfigs):
from labml_nn.optimizers.amsgrad import AMSGrad
return AMSGrad(c.parameters,
lr=c.learning_rate, betas=c.betas, eps=c.eps,
optimized_update=c.optimized_adam_update,
weight_decay=c.weight_decay_obj, amsgrad=c.amsgrad)
else:
from labml_nn.optimizers.adam import Adam
return Adam(c.parameters,
lr=c.learning_rate, betas=c.betas, eps=c.eps,
optimized_update=c.optimized_adam_update,
weight_decay=c.weight_decay_obj)

View File

@ -14,11 +14,13 @@ from labml_nn.optimizers.amsgrad import AMSGrad
class Noam(AMSGrad):
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-16,
weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
weight_decay: WeightDecay = WeightDecay(),
optimized_update: bool = True,
amsgrad=False,
warmup=0, d_model=512, defaults=None):
defaults = {} if defaults is None else defaults
defaults.update(dict(warmup=warmup))
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, defaults)
super().__init__(params, lr, betas, eps, weight_decay, optimized_update, amsgrad, defaults)
self.d_model = d_model
def get_lr(self, state: Dict[str, any], group: Dict[str, any]):

View File

@ -1,10 +1,28 @@
"""
---
title: RAdam optimizer
title: Rectified Adam (RAdam) optimizer
summary: A simple PyTorch implementation/tutorial of RAdam optimizer.
---
Based on https://github.com/LiyuanLucasLiu/RAdam
# Rectified Adam (RAdam) optimizer
This implementation is based on
[the official implementation](https://github.com/LiyuanLucasLiu/RAdam)
of the paper
[On the Variance of the Adaptive Learning Rate and Beyond](https://arxiv.org/abs/1908.03265).
We have implemented it as an extension to [our AMSGrad implementation](amsgrad.html)
thus requiring only the modifications to be implemented.
Adam optimizer sometimes converges to a bad local optima during the initial stages of the training;
especially when training transformers.
Researches use warmups to counter this; for the the initial training steps (warm-up stage)
they use a low learning rate.
This paper identifies the problem to be the high variance of adaptive learning rate
during initial stages of training, and counters it using a new rectification term to
reduce variance.
"""
import math
@ -21,7 +39,7 @@ class RAdam(AMSGrad):
weight_decay: WeightDecay = WeightDecay(), amsgrad=False,
degenerated_to_sgd=True, defaults=None):
self.degenerated_to_sgd = degenerated_to_sgd
super().__init__(params, lr, betas, eps, weight_decay, amsgrad, defaults)
super().__init__(params, lr, betas, eps, weight_decay, False, amsgrad, defaults)
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
grad = self.weight_decay(param, grad, group)