unoptimized adam

This commit is contained in:
Varuna Jayasiri
2020-12-10 10:50:18 +05:30
parent 1f75f42fb2
commit 4d58757671
6 changed files with 59 additions and 17 deletions

View File

@ -53,9 +53,11 @@ class Adam(GenericAdaptiveOptimizer):
We extend the class `GenericAdaptiveOptimizer` defined in [`__init__.py`](index.html)
to implement the Adam optimizer.
"""
def __init__(self, params,
lr: float = 1e-3, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-16,
weight_decay: WeightDecay = WeightDecay(),
optimized_update: bool = True,
defaults: Optional[Dict[str, Any]] = None):
"""
### Initialize the optimizer
@ -63,8 +65,10 @@ class Adam(GenericAdaptiveOptimizer):
* `params` is the list of parameters
* `lr` is the learning rate $\alpha$
* `betas` is a tuple of ($\beta_1$, $\beta_2$)
* `eps` is $\hat{\epsilon}$
* `eps` is $\hat{\epsilon}$ or $\epsilon$ based on `optimized_update`
* `weight_decay` is an instance of class `WeightDecay` defined in [`__init__.py`](index.html)
* 'optimized_update' is a flag whether to optimize the bias correction of the second moment
by doing it after adding $\epsilon$
* `defaults` is a dictionary of default for group values.
This is useful when you want to extend the class `Adam`.
"""
@ -73,6 +77,7 @@ class Adam(GenericAdaptiveOptimizer):
super().__init__(params, defaults, lr, betas, eps)
self.weight_decay = weight_decay
self.optimized_update = optimized_update
def init_state(self, state: Dict[str, any], group: Dict[str, any], param: nn.Parameter):
"""
@ -163,13 +168,23 @@ class Adam(GenericAdaptiveOptimizer):
# Bias correction term for $\hat{v}_t$, $1 - \beta_2^t$
bias_correction2 = 1 - beta2 ** state['step']
# $\sqrt{v_t} + \epsilon$
denominator = v.sqrt().add_(group['eps'])
# $\alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
step_size = self.get_lr(state, group) * math.sqrt(bias_correction2) / bias_correction1
# $\theta_t \leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
# \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
param.data.addcdiv_(m, denominator, value=-step_size)
if self.optimized_update:
# $\sqrt{v_t} + \hat{\epsilon}$
denominator = v.sqrt().add_(group['eps'])
# $\alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t}$
step_size = self.get_lr(state, group) * math.sqrt(bias_correction2) / bias_correction1
# $\theta_t \leftarrow \theta_{t-1} - \alpha \frac{\sqrt{1-\beta_2^t}}{1-\beta_1^t} \cdot
# \frac{m_t}{\sqrt{v_t} + \hat{\epsilon}}$
param.data.addcdiv_(m, denominator, value=-step_size)
else:
# $\frac{\sqrt{v_t}}{\sqrt{1-\beta_2^t}} + \epsilon$
denominator = (v.sqrt() / math.sqrt(bias_correction2)).add_(group['eps'])
# $\frac{\alpha}{1-\beta_1^t}$
step_size = self.get_lr(state, group) / bias_correction1
# $\theta_t \leftarrow \theta_{t-1} - \alpha \cdot
# \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \epsilon}$
param.data.addcdiv_(m, denominator, value=-step_size)
def step_param(self, state: Dict[str, any], group: Dict[str, any], grad: torch.Tensor, param: torch.nn.Parameter):
"""