mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-26 08:41:23 +08:00
experiment links
This commit is contained in:
@ -70,10 +70,10 @@
|
||||
<a href='#section-0'>#</a>
|
||||
</div>
|
||||
<h1><a href="index.html">Denoising Diffusion Probabilistic Models (DDPM)</a> training</h1>
|
||||
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a> <a href="https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels"><img alt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
|
||||
<p>This trains a DDPM based model on CelebA HQ dataset. You can find the download instruction in this <a href="https://forums.fast.ai/t/download-celeba-hq-dataset/45873/3">discussion on fast.ai</a>. Save the images inside <a href="#dataset_path"><code class="highlight"><span></span><span class="n">data</span><span class="o">/</span><span class="n">celebA</span></code>
|
||||
folder</a>.</p>
|
||||
<p>The paper had used a exponential moving average of the model with a decay of <span class="katex"><span aria-hidden="true" class="katex-html"><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">0.9999</span></span></span></span>. We have skipped this for simplicity.</p>
|
||||
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a> <a href="https://www.comet.ml/labml/diffuse/1260757bcd6148e084ad3a46c38ac5c4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step"><img alt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
|
File diff suppressed because one or more lines are too long
@ -70,10 +70,10 @@
|
||||
<a href='#section-0'>#</a>
|
||||
</div>
|
||||
<h1><a href="https://nn.labml.ai/diffusion/ddpm/index.html">Denoising Diffusion Probabilistic Models (DDPM)</a></h1>
|
||||
<p><a href="https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg"></a> <a href="https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels"><img alt="Open In Comet" src="https://images.labml.ai/images/comet.svg?experiment=capsule_networks&file=model"></a></p>
|
||||
<p>This is a <a href="https://pytorch.org">PyTorch</a> implementation/tutorial of the paper <a href="https://papers.labml.ai/paper/2006.11239">Denoising Diffusion Probabilistic Models</a>.</p>
|
||||
<p>In simple terms, we get an image from data and add noise step by step. Then We train a model to predict that noise at each step and use the model to generate images.</p>
|
||||
<p>Here is the <a href="https://nn.labml.ai/diffusion/ddpm/unet.html">UNet model</a> that predicts the noise and <a href="https://nn.labml.ai/diffusion/ddpm/experiment.html">training code</a>. <a href="https://nn.labml.ai/diffusion/ddpm/evaluate.html">This file</a> can generate samples and interpolations from a trained model.</p>
|
||||
<p><a href="https://app.labml.ai/run/a44333ea251411ec8007d1a1762ed686"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen"></a> </p>
|
||||
<p>Here is the <a href="https://nn.labml.ai/diffusion/ddpm/unet.html">UNet model</a> that predicts the noise and <a href="https://nn.labml.ai/diffusion/ddpm/experiment.html">training code</a>. <a href="https://nn.labml.ai/diffusion/ddpm/evaluate.html">This file</a> can generate samples and interpolations from a trained model. </p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
|
@ -372,7 +372,7 @@
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/diffusion/ddpm/unet.html</loc>
|
||||
<lastmod>2021-10-24T16:30:00+00:00</lastmod>
|
||||
<lastmod>2022-06-09T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
@ -400,7 +400,7 @@
|
||||
|
||||
<url>
|
||||
<loc>https://nn.labml.ai/diffusion/ddpm/evaluate.html</loc>
|
||||
<lastmod>2021-10-24T16:30:00+00:00</lastmod>
|
||||
<lastmod>2022-06-09T16:30:00+00:00</lastmod>
|
||||
<priority>1.00</priority>
|
||||
</url>
|
||||
|
||||
|
@ -8,6 +8,9 @@ summary: >
|
||||
|
||||
# Fuzzy Tiling Activations (FTA)
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/fta/69be11f83693407f82a86dcbb232bcfe?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&viewId=rlJOpXDGtL8zbkcX66R77P5me&xAxis=step)
|
||||
|
||||
This is a [PyTorch](https://pytorch.org) implementation/tutorial of
|
||||
[Fuzzy Tiling Activations: A Simple Approach to Learning Sparse Representations Online](https://papers.labml.ai/paper/aca66d8edc8911eba3db37f65e372566).
|
||||
|
||||
@ -54,9 +57,6 @@ FTA uses this to create soft boundaries between bins.
|
||||
$$\phi_\eta(z) = 1 - I_{\eta,+} \big( \max(\mathbf{c} - z, 0) + \max(z - \delta - \mathbf{c}, 0) \big)$$
|
||||
|
||||
[Here's a simple experiment](experiment.html) that uses FTA in a transformer.
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/fta/69be11f83693407f82a86dcbb232bcfe?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&viewId=rlJOpXDGtL8zbkcX66R77P5me&xAxis=step)
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
@ -7,6 +7,9 @@ summary: >
|
||||
|
||||
# [Fuzzy Tiling Activation](index.html) Experiment
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/fta/69be11f83693407f82a86dcbb232bcfe?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&viewId=rlJOpXDGtL8zbkcX66R77P5me&xAxis=step)
|
||||
|
||||
Here we train a transformer that uses [Fuzzy Tiling Activation](index.html) in the
|
||||
[Feed-Forward Network](../../transformers/feed_forward.html).
|
||||
We use it for a language model and train it on Tiny Shakespeare dataset
|
||||
@ -14,9 +17,6 @@ for demonstration.
|
||||
|
||||
However, this is probably not the ideal task for FTA, and we
|
||||
believe FTA is more suitable for modeling data with continuous variables.
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/activations/fta/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/fta/69be11f83693407f82a86dcbb232bcfe?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&viewId=rlJOpXDGtL8zbkcX66R77P5me&xAxis=step)
|
||||
"""
|
||||
|
||||
import copy
|
||||
|
@ -28,7 +28,6 @@ Here's a notebook for training a Capsule Network on MNIST dataset.
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/capsule_networks/mnist.ipynb)
|
||||
[](https://app.labml.ai/run/e7c08e08586711ebb3e30242ac1c0002)
|
||||
[](https://www.comet.ml/labml/capsule-networks/reports/capsule-networks)
|
||||
"""
|
||||
|
||||
import torch.nn as nn
|
||||
|
@ -10,8 +10,6 @@ This is an annotated PyTorch code to classify MNIST digits with PyTorch.
|
||||
|
||||
This paper implements the experiment described in paper
|
||||
[Dynamic Routing Between Capsules](https://papers.labml.ai/paper/1710.09829).
|
||||
|
||||
[](https://www.comet.ml/labml/capsule-networks/reports/capsule-networks)
|
||||
"""
|
||||
from typing import Any
|
||||
|
||||
|
@ -8,6 +8,9 @@ summary: >
|
||||
|
||||
# Denoising Diffusion Probabilistic Models (DDPM)
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)
|
||||
|
||||
This is a [PyTorch](https://pytorch.org) implementation/tutorial of the paper
|
||||
[Denoising Diffusion Probabilistic Models](https://papers.labml.ai/paper/2006.11239).
|
||||
|
||||
@ -156,9 +159,6 @@ training.
|
||||
Here is the [UNet model](unet.html) that gives $\textcolor{lightgreen}{\epsilon_\theta}(x_t, t)$ and
|
||||
[training code](experiment.html).
|
||||
[This file](evaluate.html) can generate samples and interpolations from a trained model.
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/diffuse/1260757bcd6148e084ad3a46c38ac5c4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step)
|
||||
"""
|
||||
from typing import Tuple, Optional
|
||||
|
||||
|
@ -11,7 +11,7 @@
|
||||
"source": [
|
||||
"[](https://github.com/labmlai/annotated_deep_learning_paper_implementations)\n",
|
||||
"[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)\n",
|
||||
"[](https://www.comet.ml/labml/diffuse/1260757bcd6148e084ad3a46c38ac5c4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step)\n",
|
||||
"[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)\n",
|
||||
"\n",
|
||||
"## [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html)\n",
|
||||
"\n",
|
||||
@ -201,7 +201,11 @@
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%% md\n"
|
||||
}
|
||||
},
|
||||
"source": [
|
||||
"Initializ"
|
||||
]
|
||||
@ -209,7 +213,11 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"configs.init()"
|
||||
@ -282,7 +290,11 @@
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"metadata": {
|
||||
"pycharm": {
|
||||
"name": "#%%\n"
|
||||
}
|
||||
},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
|
@ -8,15 +8,15 @@ summary: >
|
||||
|
||||
# [Denoising Diffusion Probabilistic Models (DDPM)](index.html) training
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)
|
||||
|
||||
This trains a DDPM based model on CelebA HQ dataset. You can find the download instruction in this
|
||||
[discussion on fast.ai](https://forums.fast.ai/t/download-celeba-hq-dataset/45873/3).
|
||||
Save the images inside [`data/celebA` folder](#dataset_path).
|
||||
|
||||
The paper had used a exponential moving average of the model with a decay of $0.9999$. We have skipped this for
|
||||
simplicity.
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/diffuse/1260757bcd6148e084ad3a46c38ac5c4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step)
|
||||
"""
|
||||
from typing import List
|
||||
|
||||
|
@ -1,5 +1,8 @@
|
||||
# [Denoising Diffusion Probabilistic Models (DDPM)](https://nn.labml.ai/diffusion/ddpm/index.html)
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/diffusion/ddpm/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/diffuse/view/FknjSiKWotr8fgZerpC1sV1cy/panels)
|
||||
|
||||
This is a [PyTorch](https://pytorch.org) implementation/tutorial of the paper
|
||||
[Denoising Diffusion Probabilistic Models](https://papers.labml.ai/paper/2006.11239).
|
||||
|
||||
@ -11,5 +14,3 @@ Here is the [UNet model](https://nn.labml.ai/diffusion/ddpm/unet.html) that pred
|
||||
[training code](https://nn.labml.ai/diffusion/ddpm/experiment.html).
|
||||
[This file](https://nn.labml.ai/diffusion/ddpm/evaluate.html) can generate samples and interpolations
|
||||
from a trained model.
|
||||
|
||||
[](https://app.labml.ai/run/a44333ea251411ec8007d1a1762ed686)
|
||||
|
@ -7,6 +7,9 @@ summary: >
|
||||
|
||||
# DeepNorm
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/normalization/deep_norm/experiment.ipynb)
|
||||
[](https://www.comet.ml/labml/deep-norm/61d817f80ff143c8825fba4aacd431d4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step)
|
||||
|
||||
This is a [PyTorch](https://pytorch.org) implementation of
|
||||
the DeepNorm from the paper
|
||||
[DeepNet: Scaling Transformers to 1,000 Layers](https://papers.labml.ai/paper/2203.00555).
|
||||
@ -66,10 +69,6 @@ Where $N$ is the number of layers in the encoder and $M$ is the number of layers
|
||||
Refer to [the paper](https://papers.labml.ai/paper/2203.00555) for derivation.
|
||||
|
||||
[Here is an experiment implementation](experiment.html) that uses DeepNorm.
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/normalization/deep_norm/experiment.ipynb)
|
||||
[](https://app.labml.ai/run/ec8e4dacb7f311ec8d1cd37d50b05c3d)
|
||||
[](https://www.comet.ml/labml/deep-norm/61d817f80ff143c8825fba4aacd431d4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step)
|
||||
"""
|
||||
|
||||
from typing import Union, List
|
||||
|
@ -11,7 +11,6 @@
|
||||
"source": [
|
||||
"[](https://github.com/labmlai/annotated_deep_learning_paper_implementations)\n",
|
||||
"[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/normalization/deep_norm/experiment.ipynb)\n",
|
||||
"[](https://app.labml.ai/run/ec8e4dacb7f311ec8d1cd37d50b05c3d)\n",
|
||||
"[](https://www.comet.ml/labml/deep-norm/61d817f80ff143c8825fba4aacd431d4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step)\n",
|
||||
"\n",
|
||||
"## DeepNorm\n",
|
||||
|
@ -8,7 +8,6 @@ summary: >
|
||||
# [DeepNorm](index.html) Experiment
|
||||
|
||||
[](https://colab.research.google.com/github/labmlai/annotated_deep_learning_paper_implementations/blob/master/labml_nn/normalization/deep_norm/experiment.ipynb)
|
||||
[](https://app.labml.ai/run/ec8e4dacb7f311ec8d1cd37d50b05c3d)
|
||||
[](https://www.comet.ml/labml/deep-norm/61d817f80ff143c8825fba4aacd431d4?experiment-tab=chart&showOutliers=true&smoothing=0&transformY=smoothing&xAxis=step)
|
||||
"""
|
||||
|
||||
|
Reference in New Issue
Block a user