diff --git a/docs/diffusion/ddpm/index.html b/docs/diffusion/ddpm/index.html index a199c5de..74ada1c2 100644 --- a/docs/diffusion/ddpm/index.html +++ b/docs/diffusion/ddpm/index.html @@ -604,7 +604,7 @@ q(x_t|x_0) &= \mathcal{N} \Big(x_t; \sqrt{\bar\alpha_t} x_0, (1-\bar\alpha_t) \m -

Here’s our tweet with a summary

+

Here’s our Twitter thread with a summary

Annotated @PyTorch implementation of "Denoising Diffusion Probabilistic Models" by @hojonathanho @ajayj_ @pabbeel @berkeley_ai

๐Ÿ“ Annotated code https://t.co/IxJMNQxJMa
๐Ÿ–ฅ Github https://t.co/he5yIZZlB2
๐Ÿ“Ž Paper https://t.co/FjpamUVhLI

๐Ÿงต๐Ÿ‘‡ pic.twitter.com/5SIZud6OnH

— labml.ai (@labmlai) October 9, 2021

diff --git a/labml_nn/diffusion/ddpm/__init__.py b/labml_nn/diffusion/ddpm/__init__.py index d941431a..4a857e13 100644 --- a/labml_nn/diffusion/ddpm/__init__.py +++ b/labml_nn/diffusion/ddpm/__init__.py @@ -286,5 +286,5 @@ class DenoiseDiffusion: # MSE loss return F.mse_loss(noise, eps_theta) -# ## Here's our tweet with a summary +# ## Here's our Twitter thread with a summary #

Annotated @PyTorch implementation of "Denoising Diffusion Probabilistic Models" by @hojonathanho @ajayj_ @pabbeel @berkeley_ai

๐Ÿ“ Annotated code https://t.co/IxJMNQxJMa
๐Ÿ–ฅ Github https://t.co/he5yIZZlB2
๐Ÿ“Ž Paper https://t.co/FjpamUVhLI

๐Ÿงต๐Ÿ‘‡ pic.twitter.com/5SIZud6OnH

— labml.ai (@labmlai) October 9, 2021