mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-11-03 22:09:18 +08:00
math comment fix
This commit is contained in:
@ -181,7 +181,7 @@ class FastWeightsAttention(Module):
|
|||||||
The model first retrieves the current value
|
The model first retrieves the current value
|
||||||
$\bar{v}^{(i)}$ paired with the key $k^{(i)}$.
|
$\bar{v}^{(i)}$ paired with the key $k^{(i)}$.
|
||||||
Then stores a combination $v^{(i)}_{new}$
|
Then stores a combination $v^{(i)}_{new}$
|
||||||
of the retrieved value $\bar{v}^{̄(i)}$ and the input $v^{(i)}$.
|
of the retrieved value $\bar{v}^{(i)}$ and the input $v^{(i)}$.
|
||||||
|
|
||||||
\begin{align}
|
\begin{align}
|
||||||
k^{(i)}, v^{(i)}, q^{(i)} &=
|
k^{(i)}, v^{(i)}, q^{(i)} &=
|
||||||
|
|||||||
@ -50,7 +50,7 @@ def get_positional_encoding(d_model: int, max_len: int = 5000):
|
|||||||
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
position = torch.arange(0, max_len, dtype=torch.float32).unsqueeze(1)
|
||||||
# $2 * i$
|
# $2 * i$
|
||||||
two_i = torch.arange(0, d_model, 2, dtype=torch.float32)
|
two_i = torch.arange(0, d_model, 2, dtype=torch.float32)
|
||||||
# $10000^{\frac{2i}{d_{model}}$
|
# $10000^{\frac{2i}{d_{model}}}$
|
||||||
div_term = torch.exp(two_i * -(math.log(10000.0) / d_model))
|
div_term = torch.exp(two_i * -(math.log(10000.0) / d_model))
|
||||||
# $PE_{p,2i} = sin\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$
|
# $PE_{p,2i} = sin\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$
|
||||||
encodings[:, 0::2] = torch.sin(position * div_term)
|
encodings[:, 0::2] = torch.sin(position * div_term)
|
||||||
|
|||||||
Reference in New Issue
Block a user