mirror of
https://github.com/labmlai/annotated_deep_learning_paper_implementations.git
synced 2025-08-14 01:13:00 +08:00
📚 batch norm notebook
This commit is contained in:
@ -126,6 +126,8 @@ where $y^{(k)}$ is the output of of the batch normalization layer.</p>
|
||||
like $Wu + b$ the bias parameter $b$ gets cancelled due to normalization.
|
||||
So you can and should omit bias parameter in linear transforms right before the
|
||||
batch normalization.</p>
|
||||
<p>Batch normalization also makes the back propagation invariant to the scale of the weights.
|
||||
And empirically it improves generalization, so it has regularization effects too.</p>
|
||||
<h2>Inference</h2>
|
||||
<p>We need to know $\mathbb{E}[x^{(k)}]$ and $Var[x^{(k)}]$ in order to
|
||||
perform the normalization.
|
||||
@ -133,12 +135,16 @@ So during inference, you either need to go through the whole (or part of) datase
|
||||
and find the mean and variance, or you can use an estimate calculated during training.
|
||||
The usual practice is to calculate an exponential moving average of
|
||||
mean and variance during training phase and use that for inference.</p>
|
||||
<p>Here’s <a href="mnist.html">the training code</a> and a notebook for training
|
||||
a CNN classifier that use batch normalization for MNIST dataset.</p>
|
||||
<p><a href="https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/normalization/batch_norm/mnist.ipynb"><img alt="Open In Colab" src="https://colab.research.google.com/assets/colab-badge.svg" /></a>
|
||||
<a href="https://web.lab-ml.com/run?uuid=011254fe647011ebbb8e0242ac1c0002"><img alt="View Run" src="https://img.shields.io/badge/labml-experiment-brightgreen" /></a></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">89</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
|
||||
<span class="lineno">90</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
|
||||
<span class="lineno">91</span>
|
||||
<span class="lineno">92</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">98</span><span></span><span class="kn">import</span> <span class="nn">torch</span>
|
||||
<span class="lineno">99</span><span class="kn">from</span> <span class="nn">torch</span> <span class="kn">import</span> <span class="n">nn</span>
|
||||
<span class="lineno">100</span>
|
||||
<span class="lineno">101</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-1'>
|
||||
@ -149,7 +155,7 @@ mean and variance during training phase and use that for inference.</p>
|
||||
<h2>Batch Normalization Layer</h2>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">95</span><span class="k">class</span> <span class="nc">BatchNorm</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">104</span><span class="k">class</span> <span class="nc">BatchNorm</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-2'>
|
||||
@ -167,9 +173,9 @@ mean and variance during training phase and use that for inference.</p>
|
||||
<p>We’ve tried to use the same names for arguments as PyTorch <code>BatchNorm</code> implementation.</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">99</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">channels</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span>
|
||||
<span class="lineno">100</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span> <span class="n">momentum</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span>
|
||||
<span class="lineno">101</span> <span class="n">affine</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">track_running_stats</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">):</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">108</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">channels</span><span class="p">:</span> <span class="nb">int</span><span class="p">,</span> <span class="o">*</span><span class="p">,</span>
|
||||
<span class="lineno">109</span> <span class="n">eps</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">1e-5</span><span class="p">,</span> <span class="n">momentum</span><span class="p">:</span> <span class="nb">float</span> <span class="o">=</span> <span class="mf">0.1</span><span class="p">,</span>
|
||||
<span class="lineno">110</span> <span class="n">affine</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">,</span> <span class="n">track_running_stats</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">True</span><span class="p">):</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-3'>
|
||||
@ -180,14 +186,14 @@ mean and variance during training phase and use that for inference.</p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">111</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||||
<span class="lineno">112</span>
|
||||
<span class="lineno">113</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span> <span class="o">=</span> <span class="n">channels</span>
|
||||
<span class="lineno">114</span>
|
||||
<span class="lineno">115</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
|
||||
<span class="lineno">116</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">=</span> <span class="n">momentum</span>
|
||||
<span class="lineno">117</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span> <span class="o">=</span> <span class="n">affine</span>
|
||||
<span class="lineno">118</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span> <span class="o">=</span> <span class="n">track_running_stats</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">120</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span>
|
||||
<span class="lineno">121</span>
|
||||
<span class="lineno">122</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span> <span class="o">=</span> <span class="n">channels</span>
|
||||
<span class="lineno">123</span>
|
||||
<span class="lineno">124</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span> <span class="o">=</span> <span class="n">eps</span>
|
||||
<span class="lineno">125</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">=</span> <span class="n">momentum</span>
|
||||
<span class="lineno">126</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span> <span class="o">=</span> <span class="n">affine</span>
|
||||
<span class="lineno">127</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span> <span class="o">=</span> <span class="n">track_running_stats</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-4'>
|
||||
@ -198,9 +204,9 @@ mean and variance during training phase and use that for inference.</p>
|
||||
<p>Create parameters for $\gamma$ and $\beta$ for scale and shift</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">120</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span><span class="p">:</span>
|
||||
<span class="lineno">121</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span>
|
||||
<span class="lineno">122</span> <span class="bp">self</span><span class="o">.</span><span class="n">shift</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">129</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span><span class="p">:</span>
|
||||
<span class="lineno">130</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span>
|
||||
<span class="lineno">131</span> <span class="bp">self</span><span class="o">.</span><span class="n">shift</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Parameter</span><span class="p">(</span><span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-5'>
|
||||
@ -212,9 +218,9 @@ mean and variance during training phase and use that for inference.</p>
|
||||
mean $\mathbb{E}[x^{(k)}]$ and variance $Var[x^{(k)}]$</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">125</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span>
|
||||
<span class="lineno">126</span> <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'exp_mean'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span>
|
||||
<span class="lineno">127</span> <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'exp_var'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">134</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span>
|
||||
<span class="lineno">135</span> <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'exp_mean'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span>
|
||||
<span class="lineno">136</span> <span class="bp">self</span><span class="o">.</span><span class="n">register_buffer</span><span class="p">(</span><span class="s1">'exp_var'</span><span class="p">,</span> <span class="n">torch</span><span class="o">.</span><span class="n">ones</span><span class="p">(</span><span class="n">channels</span><span class="p">))</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-6'>
|
||||
@ -228,7 +234,7 @@ mean $\mathbb{E}[x^{(k)}]$ and variance $Var[x^{(k)}]$</p>
|
||||
<code>[batch_size, channels, height, width]</code></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">129</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">138</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-7'>
|
||||
@ -239,7 +245,7 @@ mean $\mathbb{E}[x^{(k)}]$ and variance $Var[x^{(k)}]$</p>
|
||||
<p>Keep the original shape</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">137</span> <span class="n">x_shape</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">146</span> <span class="n">x_shape</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-8'>
|
||||
@ -250,7 +256,7 @@ mean $\mathbb{E}[x^{(k)}]$ and variance $Var[x^{(k)}]$</p>
|
||||
<p>Get the batch size</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">139</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">x_shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">148</span> <span class="n">batch_size</span> <span class="o">=</span> <span class="n">x_shape</span><span class="p">[</span><span class="mi">0</span><span class="p">]</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-9'>
|
||||
@ -261,7 +267,7 @@ mean $\mathbb{E}[x^{(k)}]$ and variance $Var[x^{(k)}]$</p>
|
||||
<p>Sanity check to make sure the number of features is same</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">141</span> <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span> <span class="o">==</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">150</span> <span class="k">assert</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span> <span class="o">==</span> <span class="n">x</span><span class="o">.</span><span class="n">shape</span><span class="p">[</span><span class="mi">1</span><span class="p">]</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-10'>
|
||||
@ -272,7 +278,7 @@ mean $\mathbb{E}[x^{(k)}]$ and variance $Var[x^{(k)}]$</p>
|
||||
<p>Reshape into <code>[batch_size, channels, n]</code></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">144</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">153</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">batch_size</span><span class="p">,</span> <span class="bp">self</span><span class="o">.</span><span class="n">channels</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-11'>
|
||||
@ -284,7 +290,7 @@ mean $\mathbb{E}[x^{(k)}]$ and variance $Var[x^{(k)}]$</p>
|
||||
if we are in training mode or if we have not tracked exponential moving averages</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">148</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span> <span class="ow">or</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">157</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span> <span class="ow">or</span> <span class="ow">not</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-12'>
|
||||
@ -296,7 +302,7 @@ if we are in training mode or if we have not tracked exponential moving averages
|
||||
i.e. the means for each feature $\mathbb{E}[x^{(k)}]$</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">151</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">160</span> <span class="n">mean</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-13'>
|
||||
@ -308,7 +314,7 @@ i.e. the means for each feature $\mathbb{E}[x^{(k)}]$</p>
|
||||
i.e. the means for each feature $\mathbb{E}[(x^{(k)})^2]$</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">154</span> <span class="n">mean_x2</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">163</span> <span class="n">mean_x2</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">**</span> <span class="mi">2</span><span class="p">)</span><span class="o">.</span><span class="n">mean</span><span class="p">(</span><span class="n">dim</span><span class="o">=</span><span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">2</span><span class="p">])</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-14'>
|
||||
@ -319,7 +325,7 @@ i.e. the means for each feature $\mathbb{E}[(x^{(k)})^2]$</p>
|
||||
<p>Variance for each feature $Var[x^{(k)}] = \mathbb{E}[(x^{(k)})^2] - \mathbb{E}[x^{(k)}]^2$</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">156</span> <span class="n">var</span> <span class="o">=</span> <span class="n">mean_x2</span> <span class="o">-</span> <span class="n">mean</span> <span class="o">**</span> <span class="mi">2</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">165</span> <span class="n">var</span> <span class="o">=</span> <span class="n">mean_x2</span> <span class="o">-</span> <span class="n">mean</span> <span class="o">**</span> <span class="mi">2</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-15'>
|
||||
@ -330,9 +336,9 @@ i.e. the means for each feature $\mathbb{E}[(x^{(k)})^2]$</p>
|
||||
<p>Update exponential moving averages</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">159</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span>
|
||||
<span class="lineno">160</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_mean</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_mean</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">*</span> <span class="n">mean</span>
|
||||
<span class="lineno">161</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_var</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_var</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">*</span> <span class="n">var</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">168</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">training</span> <span class="ow">and</span> <span class="bp">self</span><span class="o">.</span><span class="n">track_running_stats</span><span class="p">:</span>
|
||||
<span class="lineno">169</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_mean</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_mean</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">*</span> <span class="n">mean</span>
|
||||
<span class="lineno">170</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_var</span> <span class="o">=</span> <span class="p">(</span><span class="mi">1</span> <span class="o">-</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span><span class="p">)</span> <span class="o">*</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_var</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">momentum</span> <span class="o">*</span> <span class="n">var</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-16'>
|
||||
@ -343,9 +349,9 @@ i.e. the means for each feature $\mathbb{E}[(x^{(k)})^2]$</p>
|
||||
<p>Use exponential moving averages as estimates</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">163</span> <span class="k">else</span><span class="p">:</span>
|
||||
<span class="lineno">164</span> <span class="n">mean</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_mean</span>
|
||||
<span class="lineno">165</span> <span class="n">var</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_var</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">172</span> <span class="k">else</span><span class="p">:</span>
|
||||
<span class="lineno">173</span> <span class="n">mean</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_mean</span>
|
||||
<span class="lineno">174</span> <span class="n">var</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">exp_var</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-17'>
|
||||
@ -357,7 +363,7 @@ i.e. the means for each feature $\mathbb{E}[(x^{(k)})^2]$</p>
|
||||
</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">168</span> <span class="n">x_norm</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span> <span class="o">/</span> <span class="n">torch</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">177</span> <span class="n">x_norm</span> <span class="o">=</span> <span class="p">(</span><span class="n">x</span> <span class="o">-</span> <span class="n">mean</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">))</span> <span class="o">/</span> <span class="n">torch</span><span class="o">.</span><span class="n">sqrt</span><span class="p">(</span><span class="n">var</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">eps</span><span class="p">)</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-18'>
|
||||
@ -369,8 +375,8 @@ i.e. the means for each feature $\mathbb{E}[(x^{(k)})^2]$</p>
|
||||
</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">170</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span><span class="p">:</span>
|
||||
<span class="lineno">171</span> <span class="n">x_norm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">x_norm</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">shift</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">179</span> <span class="k">if</span> <span class="bp">self</span><span class="o">.</span><span class="n">affine</span><span class="p">:</span>
|
||||
<span class="lineno">180</span> <span class="n">x_norm</span> <span class="o">=</span> <span class="bp">self</span><span class="o">.</span><span class="n">scale</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span> <span class="o">*</span> <span class="n">x_norm</span> <span class="o">+</span> <span class="bp">self</span><span class="o">.</span><span class="n">shift</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-19'>
|
||||
@ -381,7 +387,7 @@ i.e. the means for each feature $\mathbb{E}[(x^{(k)})^2]$</p>
|
||||
<p>Reshape to original and return</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">174</span> <span class="k">return</span> <span class="n">x_norm</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x_shape</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">183</span> <span class="k">return</span> <span class="n">x_norm</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="n">x_shape</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
@ -3,12 +3,12 @@
|
||||
<head>
|
||||
<meta http-equiv="content-type" content="text/html;charset=utf-8"/>
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0"/>
|
||||
<meta name="description" content="This is a simple model for MNIST digit classification that uses batch normalization"/>
|
||||
<meta name="description" content="This trains is a simple convolutional neural network that uses batch normalization to classify MNIST digits."/>
|
||||
|
||||
<meta name="twitter:card" content="summary"/>
|
||||
<meta name="twitter:image:src" content="https://avatars1.githubusercontent.com/u/64068543?s=400&v=4"/>
|
||||
<meta name="twitter:title" content="MNIST Experiment to try Batch Normalization"/>
|
||||
<meta name="twitter:description" content="This is a simple model for MNIST digit classification that uses batch normalization"/>
|
||||
<meta name="twitter:description" content="This trains is a simple convolutional neural network that uses batch normalization to classify MNIST digits."/>
|
||||
<meta name="twitter:site" content="@labmlai"/>
|
||||
<meta name="twitter:creator" content="@labmlai"/>
|
||||
|
||||
@ -18,7 +18,7 @@
|
||||
<meta property="og:site_name" content="LabML Neural Networks"/>
|
||||
<meta property="og:type" content="object"/>
|
||||
<meta property="og:title" content="MNIST Experiment to try Batch Normalization"/>
|
||||
<meta property="og:description" content="This is a simple model for MNIST digit classification that uses batch normalization"/>
|
||||
<meta property="og:description" content="This trains is a simple convolutional neural network that uses batch normalization to classify MNIST digits."/>
|
||||
|
||||
<title>MNIST Experiment to try Batch Normalization</title>
|
||||
<link rel="shortcut icon" href="/icon.png"/>
|
||||
@ -75,15 +75,15 @@
|
||||
<h1>MNIST Experiment for Batch Normalization</h1>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">11</span><span></span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
|
||||
<span class="lineno">12</span><span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
|
||||
<span class="lineno">13</span><span class="kn">import</span> <span class="nn">torch.utils.data</span>
|
||||
<span class="lineno">14</span>
|
||||
<span class="lineno">15</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span>
|
||||
<span class="lineno">16</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span>
|
||||
<span class="lineno">17</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
|
||||
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml_nn.experiments.mnist</span> <span class="kn">import</span> <span class="n">MNISTConfigs</span>
|
||||
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml_nn.normalization.batch_norm</span> <span class="kn">import</span> <span class="n">BatchNorm</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">12</span><span></span><span class="kn">import</span> <span class="nn">torch.nn</span> <span class="k">as</span> <span class="nn">nn</span>
|
||||
<span class="lineno">13</span><span class="kn">import</span> <span class="nn">torch.nn.functional</span> <span class="k">as</span> <span class="nn">F</span>
|
||||
<span class="lineno">14</span><span class="kn">import</span> <span class="nn">torch.utils.data</span>
|
||||
<span class="lineno">15</span>
|
||||
<span class="lineno">16</span><span class="kn">from</span> <span class="nn">labml</span> <span class="kn">import</span> <span class="n">experiment</span>
|
||||
<span class="lineno">17</span><span class="kn">from</span> <span class="nn">labml.configs</span> <span class="kn">import</span> <span class="n">option</span>
|
||||
<span class="lineno">18</span><span class="kn">from</span> <span class="nn">labml_helpers.module</span> <span class="kn">import</span> <span class="n">Module</span>
|
||||
<span class="lineno">19</span><span class="kn">from</span> <span class="nn">labml_nn.experiments.mnist</span> <span class="kn">import</span> <span class="n">MNISTConfigs</span>
|
||||
<span class="lineno">20</span><span class="kn">from</span> <span class="nn">labml_nn.normalization.batch_norm</span> <span class="kn">import</span> <span class="n">BatchNorm</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-1'>
|
||||
@ -94,7 +94,7 @@
|
||||
<h3>Model definition</h3>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">22</span><span class="k">class</span> <span class="nc">Model</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">23</span><span class="k">class</span> <span class="nc">Model</span><span class="p">(</span><span class="n">Module</span><span class="p">):</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-2'>
|
||||
@ -105,8 +105,8 @@
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">27</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
<span class="lineno">28</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">28</span> <span class="k">def</span> <span class="fm">__init__</span><span class="p">(</span><span class="bp">self</span><span class="p">):</span>
|
||||
<span class="lineno">29</span> <span class="nb">super</span><span class="p">()</span><span class="o">.</span><span class="fm">__init__</span><span class="p">()</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-3'>
|
||||
@ -117,7 +117,7 @@
|
||||
<p>Note that we omit the bias parameter</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">30</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">31</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">1</span><span class="p">,</span> <span class="mi">20</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-4'>
|
||||
@ -129,7 +129,7 @@
|
||||
The input to this layer will have shape <code>[batch_size, 20, height(24), width(24)]</code></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">33</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn1</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">20</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">34</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn1</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">20</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-5'>
|
||||
@ -140,7 +140,7 @@ The input to this layer will have shape <code>[batch_size, 20, height(24), width
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">35</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">36</span> <span class="bp">self</span><span class="o">.</span><span class="n">conv2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Conv2d</span><span class="p">(</span><span class="mi">20</span><span class="p">,</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">5</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-6'>
|
||||
@ -152,7 +152,7 @@ The input to this layer will have shape <code>[batch_size, 20, height(24), width
|
||||
The input to this layer will have shape <code>[batch_size, 50, height(8), width(8)]</code></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">38</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn2</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">50</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">39</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn2</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">50</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-7'>
|
||||
@ -163,7 +163,7 @@ The input to this layer will have shape <code>[batch_size, 50, height(8), width(
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">40</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">4</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">500</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">41</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc1</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">4</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">50</span><span class="p">,</span> <span class="mi">500</span><span class="p">,</span> <span class="n">bias</span><span class="o">=</span><span class="kc">False</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-8'>
|
||||
@ -175,7 +175,7 @@ The input to this layer will have shape <code>[batch_size, 50, height(8), width(
|
||||
The input to this layer will have shape <code>[batch_size, 500]</code></p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">43</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn3</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">500</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">44</span> <span class="bp">self</span><span class="o">.</span><span class="n">bn3</span> <span class="o">=</span> <span class="n">BatchNorm</span><span class="p">(</span><span class="mi">500</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-9'>
|
||||
@ -186,7 +186,7 @@ The input to this layer will have shape <code>[batch_size, 500]</code></p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">45</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">500</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">46</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span> <span class="o">=</span> <span class="n">nn</span><span class="o">.</span><span class="n">Linear</span><span class="p">(</span><span class="mi">500</span><span class="p">,</span> <span class="mi">10</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-10'>
|
||||
@ -197,14 +197,14 @@ The input to this layer will have shape <code>[batch_size, 500]</code></p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">47</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
|
||||
<span class="lineno">48</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn1</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">49</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="lineno">50</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn2</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">51</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="lineno">52</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">50</span><span class="p">)</span>
|
||||
<span class="lineno">53</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn3</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">54</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">48</span> <span class="k">def</span> <span class="fm">__call__</span><span class="p">(</span><span class="bp">self</span><span class="p">,</span> <span class="n">x</span><span class="p">:</span> <span class="n">torch</span><span class="o">.</span><span class="n">Tensor</span><span class="p">):</span>
|
||||
<span class="lineno">49</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn1</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">50</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="lineno">51</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn2</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">conv2</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">52</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">max_pool2d</span><span class="p">(</span><span class="n">x</span><span class="p">,</span> <span class="mi">2</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
|
||||
<span class="lineno">53</span> <span class="n">x</span> <span class="o">=</span> <span class="n">x</span><span class="o">.</span><span class="n">view</span><span class="p">(</span><span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">4</span> <span class="o">*</span> <span class="mi">50</span><span class="p">)</span>
|
||||
<span class="lineno">54</span> <span class="n">x</span> <span class="o">=</span> <span class="n">F</span><span class="o">.</span><span class="n">relu</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">bn3</span><span class="p">(</span><span class="bp">self</span><span class="o">.</span><span class="n">fc1</span><span class="p">(</span><span class="n">x</span><span class="p">)))</span>
|
||||
<span class="lineno">55</span> <span class="k">return</span> <span class="bp">self</span><span class="o">.</span><span class="n">fc2</span><span class="p">(</span><span class="n">x</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-11'>
|
||||
@ -217,8 +217,8 @@ The input to this layer will have shape <code>[batch_size, 500]</code></p>
|
||||
and set a new function to calculate the model.</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">57</span><span class="nd">@option</span><span class="p">(</span><span class="n">MNISTConfigs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
|
||||
<span class="lineno">58</span><span class="k">def</span> <span class="nf">model</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">MNISTConfigs</span><span class="p">):</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">58</span><span class="nd">@option</span><span class="p">(</span><span class="n">MNISTConfigs</span><span class="o">.</span><span class="n">model</span><span class="p">)</span>
|
||||
<span class="lineno">59</span><span class="k">def</span> <span class="nf">model</span><span class="p">(</span><span class="n">c</span><span class="p">:</span> <span class="n">MNISTConfigs</span><span class="p">):</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-12'>
|
||||
@ -229,7 +229,7 @@ and set a new function to calculate the model.</p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">65</span> <span class="k">return</span> <span class="n">Model</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">66</span> <span class="k">return</span> <span class="n">Model</span><span class="p">()</span><span class="o">.</span><span class="n">to</span><span class="p">(</span><span class="n">c</span><span class="o">.</span><span class="n">device</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-13'>
|
||||
@ -240,7 +240,7 @@ and set a new function to calculate the model.</p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">68</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">69</span><span class="k">def</span> <span class="nf">main</span><span class="p">():</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-14'>
|
||||
@ -251,7 +251,7 @@ and set a new function to calculate the model.</p>
|
||||
<p>Create experiment</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">70</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">'mnist_batch_norm'</span><span class="p">)</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">71</span> <span class="n">experiment</span><span class="o">.</span><span class="n">create</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s1">'mnist_batch_norm'</span><span class="p">)</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-15'>
|
||||
@ -262,7 +262,7 @@ and set a new function to calculate the model.</p>
|
||||
<p>Create configurations</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">72</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">MNISTConfigs</span><span class="p">()</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">73</span> <span class="n">conf</span> <span class="o">=</span> <span class="n">MNISTConfigs</span><span class="p">()</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-16'>
|
||||
@ -273,7 +273,7 @@ and set a new function to calculate the model.</p>
|
||||
<p>Load configurations</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">74</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="p">{</span><span class="s1">'optimizer.optimizer'</span><span class="p">:</span> <span class="s1">'Adam'</span><span class="p">})</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">75</span> <span class="n">experiment</span><span class="o">.</span><span class="n">configs</span><span class="p">(</span><span class="n">conf</span><span class="p">,</span> <span class="p">{</span><span class="s1">'optimizer.optimizer'</span><span class="p">:</span> <span class="s1">'Adam'</span><span class="p">})</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-17'>
|
||||
@ -284,8 +284,8 @@ and set a new function to calculate the model.</p>
|
||||
<p>Start the experiment and run the training loop</p>
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">76</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span>
|
||||
<span class="lineno">77</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">77</span> <span class="k">with</span> <span class="n">experiment</span><span class="o">.</span><span class="n">start</span><span class="p">():</span>
|
||||
<span class="lineno">78</span> <span class="n">conf</span><span class="o">.</span><span class="n">run</span><span class="p">()</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
<div class='section' id='section-18'>
|
||||
@ -296,8 +296,8 @@ and set a new function to calculate the model.</p>
|
||||
|
||||
</div>
|
||||
<div class='code'>
|
||||
<div class="highlight"><pre><span class="lineno">81</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
||||
<span class="lineno">82</span> <span class="n">main</span><span class="p">()</span></pre></div>
|
||||
<div class="highlight"><pre><span class="lineno">82</span><span class="k">if</span> <span class="vm">__name__</span> <span class="o">==</span> <span class="s1">'__main__'</span><span class="p">:</span>
|
||||
<span class="lineno">83</span> <span class="n">main</span><span class="p">()</span></pre></div>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
|
@ -76,6 +76,9 @@ like $Wu + b$ the bias parameter $b$ gets cancelled due to normalization.
|
||||
So you can and should omit bias parameter in linear transforms right before the
|
||||
batch normalization.
|
||||
|
||||
Batch normalization also makes the back propagation invariant to the scale of the weights.
|
||||
And empirically it improves generalization, so it has regularization effects too.
|
||||
|
||||
## Inference
|
||||
|
||||
We need to know $\mathbb{E}[x^{(k)}]$ and $Var[x^{(k)}]$ in order to
|
||||
@ -84,6 +87,12 @@ So during inference, you either need to go through the whole (or part of) datase
|
||||
and find the mean and variance, or you can use an estimate calculated during training.
|
||||
The usual practice is to calculate an exponential moving average of
|
||||
mean and variance during training phase and use that for inference.
|
||||
|
||||
Here's [the training code](mnist.html) and a notebook for training
|
||||
a CNN classifier that use batch normalization for MNIST dataset.
|
||||
|
||||
[](https://colab.research.google.com/github/lab-ml/nn/blob/master/labml_nn/normalization/batch_norm/mnist.ipynb)
|
||||
[](https://web.lab-ml.com/run?uuid=011254fe647011ebbb8e0242ac1c0002)
|
||||
"""
|
||||
|
||||
import torch
|
||||
|
1405
labml_nn/normalization/batch_norm/mnist.ipynb
Normal file
1405
labml_nn/normalization/batch_norm/mnist.ipynb
Normal file
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,8 @@
|
||||
---
|
||||
title: MNIST Experiment to try Batch Normalization
|
||||
summary: >
|
||||
This is a simple model for MNIST digit classification that uses batch normalization
|
||||
This trains is a simple convolutional neural network that uses batch normalization
|
||||
to classify MNIST digits.
|
||||
---
|
||||
|
||||
# MNIST Experiment for Batch Normalization
|
||||
|
2
setup.py
2
setup.py
@ -5,7 +5,7 @@ with open("readme.md", "r") as f:
|
||||
|
||||
setuptools.setup(
|
||||
name='labml-nn',
|
||||
version='0.4.84',
|
||||
version='0.4.85',
|
||||
author="Varuna Jayasiri, Nipun Wijerathne",
|
||||
author_email="vpjayasiri@gmail.com, hnipun@gmail.com",
|
||||
description="A collection of PyTorch implementations of neural network architectures and layers.",
|
||||
|
Reference in New Issue
Block a user