mirror of
https://github.com/skishore/makemeahanzi.git
synced 2025-10-29 01:46:07 +08:00
80 lines
2.8 KiB
JavaScript
80 lines
2.8 KiB
JavaScript
import {assert} from '/lib/base';
|
|
import {Glyphs} from '/lib/glyphs';
|
|
|
|
function evaluate(glyphs, classifier) {
|
|
var num_correct = 0;
|
|
for (var i = 0; i < glyphs.length; i++) {
|
|
if (check_classifier_on_glyph(glyphs[i], classifier)) {
|
|
num_correct += 1;
|
|
}
|
|
}
|
|
return num_correct/glyphs.length;
|
|
}
|
|
|
|
function train_neural_net() {
|
|
var glyphs = Glyphs.find({'manual.verified': true}).fetch();
|
|
var sample = _.sample(glyphs, 400);
|
|
console.log('Hand-tuned accuracy:', evaluate(sample, hand_tuned_classifier));
|
|
|
|
var training_data = [];
|
|
for (var i = 0; i < glyphs.length; i++) {
|
|
var glyph_data = get_glyph_training_data(glyphs[i]);
|
|
var positive_data = glyph_data.filter(function(x) { return x[1] > 0; });
|
|
var negative_data = glyph_data.filter(function(x) { return x[1] === 0; });
|
|
if (positive_data.length > negative_data.length) {
|
|
positive_data = _.sample(positive_data, negative_data.length);
|
|
} else {
|
|
negative_data = _.sample(negative_data, positive_data.length);
|
|
}
|
|
glyph_data = negative_data.concat(positive_data);
|
|
for (var j = 0; j < glyph_data.length; j++) {
|
|
training_data.push(glyph_data[j]);
|
|
}
|
|
}
|
|
console.log('Got ' + training_data.length + ' rows of training data.');
|
|
|
|
var net = new convnetjs.Net();
|
|
net.makeLayers([
|
|
{type: 'input', out_sx: 1, out_sy: 1, out_depth: 8},
|
|
{type: 'fc', num_neurons: 8, activation: 'tanh'},
|
|
{type: 'fc', num_neurons: 8, activation: 'tanh'},
|
|
{type: 'softmax', num_classes: 2},
|
|
]);
|
|
var trainer = new convnetjs.Trainer(
|
|
net, {method: 'adadelta', l2_decay: 0.001, batch_size: 10});
|
|
var input = new convnetjs.Vol(1, 1, 8);
|
|
for (var iteration = 0; iteration < 10; iteration++) {
|
|
var loss = 0;
|
|
var round_data = _.sample(training_data, 4000);
|
|
for (var i = 0; i < round_data.length; i++) {
|
|
assert(input.w.length === round_data[i][0].length);
|
|
input.w = round_data[i][0];
|
|
var stats = trainer.train(input, round_data[i][1]);
|
|
assert(!isNaN(stats.loss))
|
|
loss += stats.loss;
|
|
}
|
|
console.log('Iteration', iteration, 'mean loss:', loss/round_data.length);
|
|
}
|
|
console.log('Trained neural network:', JSON.stringify(net.toJSON()));
|
|
|
|
function net_classifier(features) {
|
|
assert(input.w.length === features.length);
|
|
input.w = features;
|
|
var softmax = net.forward(input).w;
|
|
assert(softmax.length === 2);
|
|
return softmax[1] - softmax[0];
|
|
}
|
|
console.log('Neural-net accuracy:', evaluate(sample, net_classifier));
|
|
|
|
function combined_classifier(weight) {
|
|
return function(features) {
|
|
return hand_tuned_classifier(features) + weight*net_classifier(features);
|
|
}
|
|
}
|
|
var weights = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1];
|
|
for (var i = 0; i < weights.length; i++) {
|
|
console.log('Weight', weights[i], 'combined accuracy:',
|
|
evaluate(sample, combined_classifier(weights[i])));
|
|
}
|
|
}
|