mirror of
https://github.com/skishore/makemeahanzi.git
synced 2025-10-30 02:18:16 +08:00
386 lines
14 KiB
JavaScript
386 lines
14 KiB
JavaScript
"use strict";
|
|
|
|
const MAX_BRIDGE_DISTANCE = 64;
|
|
const MIN_CORNER_ANGLE = 0.1*Math.PI;
|
|
const MIN_CORNER_TANGENT_DISTANCE = 4;
|
|
const REVERSAL_PENALTY = 0.5;
|
|
|
|
// Errors out if the bridges are invalid in some gross way.
|
|
const checkBridge = (bridge) => {
|
|
assert(Point.valid(bridge[0]) && Point.valid(bridge[1]));
|
|
assert(!Point.equal(bridge[0], bridge[1]));
|
|
}
|
|
|
|
// Returns the list of bridges on the path with the given endpoints. We strip
|
|
// nearly all of the metadata out of this list to make it easy to hand-correct.
|
|
// The list that we return is simply a list of pairs of points.
|
|
const getBridges = (endpoints, classifier) => {
|
|
const result = [];
|
|
const corners = endpoints.filter((x) => x.corner);
|
|
const matching = matchCorners(corners, classifier);
|
|
for (let i = 0; i < corners.length; i++) {
|
|
const j = matching[i];
|
|
if (j <= i && matching[j] === i) {
|
|
continue;
|
|
}
|
|
result.push([Point.clone(corners[i].point), Point.clone(corners[j].point)]);
|
|
}
|
|
result.map(checkBridge);
|
|
return result;
|
|
}
|
|
|
|
// Returns a list of angle and distance features between two corners.
|
|
const getFeatures = (ins, out) => {
|
|
const diff = Point.subtract(out.point, ins.point);
|
|
const trivial = Point.equal(diff, [0, 0]);
|
|
const angle = Math.atan2(diff[1], diff[0]);
|
|
const distance = Math.sqrt(Point.distance2(out.point, ins.point));
|
|
return [
|
|
Angle.subtract(angle, ins.angles[0]),
|
|
Angle.subtract(out.angles[1], angle),
|
|
Angle.subtract(ins.angles[1], angle),
|
|
Angle.subtract(angle, out.angles[0]),
|
|
Angle.subtract(ins.angles[1], ins.angles[0]),
|
|
Angle.subtract(out.angles[1], out.angles[0]),
|
|
(trivial ? 1 : 0),
|
|
distance/MAX_BRIDGE_DISTANCE,
|
|
];
|
|
}
|
|
|
|
// A hand-tuned classifier that uses the features above to return a score for
|
|
// connecting two corners by a bridge. This classifier throws out most data.
|
|
const handTunedClassifier = (features) => {
|
|
if (features[6] > 0) {
|
|
return -Angle.penalty(features[4]);
|
|
}
|
|
let angle_penalty = Angle.penalty(features[0]) + Angle.penalty(features[1]);
|
|
const distance_penalty = features[7];
|
|
if (features[0] > 0 && features[1] > 0 &&
|
|
features[2] + features[3] < -0.5*Math.PI) {
|
|
angle_penalty = angle_penalty/16;
|
|
}
|
|
return -(angle_penalty + distance_penalty);
|
|
}
|
|
|
|
// Takes a list of corners and returns a bipartite matching between them.
|
|
// If matching[i] === j, then corners[i] is matched with corners[j] - that is,
|
|
// we should construct a bridge from corners[i].point to corners[j].point.
|
|
const matchCorners = (corners, classifier) => {
|
|
const matrix = [];
|
|
for (let i = 0; i < corners.length; i++) {
|
|
matrix.push([]);
|
|
for (let j = 0; j < corners.length; j++) {
|
|
matrix[i].push(scoreCorners(corners[i], corners[j], classifier));
|
|
}
|
|
}
|
|
for (let i = 0; i < corners.length; i++) {
|
|
for (let j = 0; j < corners.length; j++) {
|
|
const reversed_score = matrix[j][i] - REVERSAL_PENALTY;
|
|
if (reversed_score > matrix[i][j]) {
|
|
matrix[i][j] = reversed_score;
|
|
}
|
|
}
|
|
}
|
|
return (new Hungarian(matrix)).x_match;
|
|
}
|
|
|
|
// Takes two corners and returns the score assigned to constructing a bridge
|
|
// from one corner to the other. The score is directed: the bridge from ins to
|
|
// out may be weighted higher than from out to ins.
|
|
const scoreCorners = (ins, out, classifier) => {
|
|
return classifier(getFeatures(ins, out));
|
|
}
|
|
|
|
// Stores angle and distance metadata around an SVG path segment's start point.
|
|
// This endpoint may be a 'corner', which is true if the path bends sharply in
|
|
// the negative (clockwise) direction at that point.
|
|
function Endpoint(paths, index) {
|
|
this.index = index;
|
|
const path = paths[index[0]];
|
|
const n = path.length;
|
|
this.indices = [[index[0], (index[1] + n - 1) % n], index];
|
|
this.segments = [path[(index[1] + n - 1) % n], path[index[1]]];
|
|
this.point = this.segments[0].end;
|
|
assert(Point.valid(this.point), this.point);
|
|
assert(Point.equal(this.point, this.segments[1].start), path);
|
|
this.tangents = [
|
|
Point.subtract(this.segments[0].end, this.segments[0].start),
|
|
Point.subtract(this.segments[1].end, this.segments[1].start),
|
|
];
|
|
const threshold = Math.pow(MIN_CORNER_TANGENT_DISTANCE, 2);
|
|
if (this.segments[0].control !== undefined &&
|
|
Point.distance2(this.point, this.segments[0].control) > threshold) {
|
|
this.tangents[0] = Point.subtract(this.point, this.segments[0].control);
|
|
}
|
|
if (this.segments[1].control !== undefined &&
|
|
Point.distance2(this.point, this.segments[1].control) > threshold) {
|
|
this.tangents[1] = Point.subtract(this.segments[1].control, this.point);
|
|
}
|
|
this.angles = this.tangents.map(Point.angle);
|
|
const diff = Angle.subtract(this.angles[1], this.angles[0]);
|
|
this.corner = diff < -MIN_CORNER_ANGLE;
|
|
return this;
|
|
}
|
|
|
|
// Code for the stroke extraction step follows.
|
|
|
|
const addEdgeToAdjacency = (edge, adjacency) => {
|
|
assert(edge.length === 2);
|
|
adjacency[edge[0]] = adjacency[edge[0]] || [];
|
|
if (adjacency[edge[0]].indexOf(edge[1]) < 0) {
|
|
adjacency[edge[0]].push(edge[1]);
|
|
}
|
|
}
|
|
|
|
const extractStroke = (paths, endpoint_map, bridge_adjacency, log,
|
|
extracted_indices, start, attempt_one) => {
|
|
const result = [];
|
|
const visited = {};
|
|
let current = start;
|
|
|
|
// A list of line segments that were added to the path but that were not
|
|
// part of the original stroke data. None of these should intersect.
|
|
const line_segments = [];
|
|
let self_intersecting = false;
|
|
|
|
const advance = (index) =>
|
|
[index[0], (index[1] + 1) % paths[index[0]].length];
|
|
|
|
const angle = (index1, index2) => {
|
|
const diff = Point.subtract(endpoint_map[Point.key(index2)].point,
|
|
endpoint_map[Point.key(index1)].point);
|
|
assert(diff[0] !== 0 || diff[1] !== 0);
|
|
const angle = Math.atan2(diff[1], diff[0]);
|
|
return Angle.subtract(angle, endpoint.angles[0]);
|
|
}
|
|
|
|
const getIntersection = (segment1, segment2) => {
|
|
const diff1 = Point.subtract(segment1[1], segment1[0]);
|
|
const diff2 = Point.subtract(segment2[1], segment2[0]);
|
|
const cross = diff1[0]*diff2[1] - diff1[1]*diff2[0];
|
|
if (cross === 0) {
|
|
return undefined;
|
|
}
|
|
const v = Point.subtract(segment1[0], segment2[0]);
|
|
const s = (diff1[0]*v[1] - diff1[1]*v[0])/cross;
|
|
const t = (diff2[0]*v[1] - diff2[1]*v[0])/cross;
|
|
if (0 < s && s < 1 && 0 < t && t < 1) {
|
|
return [segment1[0][0] + t*diff1[0], segment1[0][1] + t*diff1[1]];
|
|
}
|
|
return undefined;
|
|
}
|
|
|
|
const indexToPoint = (index) => endpoint_map[Point.key(index)].point;
|
|
|
|
const pushLineSegments = (points) => {
|
|
const old_lines = line_segments.length;
|
|
for (let i = 0; i < points.length - 1; i++) {
|
|
line_segments.push([points[i], points[i + 1]]);
|
|
result.push({
|
|
start: Point.clone(points[i]),
|
|
end: Point.clone(points[i + 1]),
|
|
control: undefined,
|
|
});
|
|
}
|
|
// Log an error if this stroke is self-intersecting.
|
|
if (!self_intersecting) {
|
|
for (let i = 0; i < old_lines; i++) {
|
|
for (let j = old_lines; j < line_segments.length; j++) {
|
|
if (getIntersection(line_segments[i], line_segments[j])) {
|
|
self_intersecting = true;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Here there be dragons!
|
|
// TODO(skishore): Document the point of the geometry in this function.
|
|
const selectBridge = (endpoint, options) => {
|
|
if (options.length === 1 && extracted_indices[Point.key(options[0])]) {
|
|
// Handle star-shaped strokes where one stroke ends at the intersection
|
|
// of the bridges used by two other strokes.
|
|
const indices1 = [endpoint.index, options[0]];
|
|
const segment1 = indices1.map(indexToPoint);
|
|
for (let key in bridge_adjacency) {
|
|
if (Point.equal(endpoint_map[key].index, indices1[0])) {
|
|
continue;
|
|
}
|
|
for (let i = 0; i < bridge_adjacency[key].length; i++) {
|
|
if (Point.equal(bridge_adjacency[key][i], segment1[0])) {
|
|
continue;
|
|
}
|
|
// Compute the other bridge segment and check if it intersects.
|
|
const indices2 = [endpoint_map[key].index, bridge_adjacency[key][i]];
|
|
const segment2 = indices2.map(indexToPoint);
|
|
if (Point.equal(indices2[0], indices1[1]) &&
|
|
!extracted_indices[Point.key(indices2[1])]) {
|
|
pushLineSegments([segment1[0], segment1[1], segment2[1]]);
|
|
return indices2[1];
|
|
} else if (Point.equal(indices2[1], indices1[1]) &&
|
|
!extracted_indices[Point.key(indices2[0])]) {
|
|
pushLineSegments([segment1[0], segment1[1], segment2[0]]);
|
|
return indices2[0];
|
|
}
|
|
const intersection = getIntersection(segment1, segment2);
|
|
if (intersection !== undefined) {
|
|
const angle1 = angle(indices1[0], indices1[1]);
|
|
const angle2 = angle(indices2[0], indices2[1]);
|
|
if (Angle.subtract(angle2, angle1) < 0) {
|
|
indices2.reverse();
|
|
segment2.reverse();
|
|
}
|
|
pushLineSegments([segment1[0], intersection, segment2[1]]);
|
|
return indices2[1];
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// Handle segments where the correct path is to follow a dead-end bridge,
|
|
// even if there is another bridge that is more aligned with the stroke.
|
|
for (let i = 0; i < options.length; i++) {
|
|
const key = Point.key(options[i]);
|
|
if (!extracted_indices[key]) {
|
|
return options[i];
|
|
}
|
|
}
|
|
}
|
|
return options[0];
|
|
}
|
|
|
|
while (true) {
|
|
// Add the current path segment to the path.
|
|
result.push(paths[current[0]][current[1]]);
|
|
visited[Point.key(current)] = true;
|
|
current = advance(current);
|
|
// If there are bridges at the start of the next path segment, follow the
|
|
// one that makes the largest angle with the current path. The ordering
|
|
// criterion enforce that we try to cross aligned bridges.
|
|
const key = Point.key(current);
|
|
if (bridge_adjacency.hasOwnProperty(key)) {
|
|
var endpoint = endpoint_map[key];
|
|
const options = bridge_adjacency[key].sort(
|
|
(a, b) => angle(endpoint.index, a) - angle(endpoint.index, b));
|
|
// HACK(skishore): The call to selectBridge may update the result.
|
|
// When a stroke is formed by computing a bridge intersection, then the
|
|
// two bridge fragments are added in selectBridge.
|
|
const result_length = result.length;
|
|
const next = (attempt_one ? options[0] : selectBridge(endpoint, options));
|
|
if (result.length === result_length) {
|
|
pushLineSegments([endpoint.point, endpoint_map[Point.key(next)].point]);
|
|
}
|
|
current = next;
|
|
}
|
|
// Check if we have either closed the loop or hit an extracted segment.
|
|
const new_key = Point.key(current);
|
|
if (Point.equal(current, start)) {
|
|
if (self_intersecting) {
|
|
log.push({cls: 'error',
|
|
message: 'Extracted a self-intersecting stroke.'});
|
|
}
|
|
let num_segments_on_path = 0;
|
|
for (let index in visited) {
|
|
extracted_indices[index] = true;
|
|
num_segments_on_path += 1;
|
|
}
|
|
// Single-segment strokes may be due to graphical artifacts in the font.
|
|
// We drop them to remove these artifacts.
|
|
if (num_segments_on_path === 1) {
|
|
log.push({message: 'Dropping single-segment stroke.'});
|
|
return undefined;
|
|
}
|
|
return result;
|
|
} else if (extracted_indices[new_key] || visited[new_key]) {
|
|
return undefined;
|
|
}
|
|
}
|
|
}
|
|
|
|
const extractStrokes = (paths, endpoints, bridges, log) => {
|
|
// Build up the necessary hash tables and adjacency lists needed to run the
|
|
// stroke extraction loop.
|
|
const endpoint_map = {};
|
|
const endpoint_position_map = {};
|
|
for (let endpoint of endpoints) {
|
|
endpoint_map[Point.key(endpoint.index)] = endpoint;
|
|
endpoint_position_map[Point.key(endpoint.point)] = endpoint;
|
|
}
|
|
bridges.map(checkBridge);
|
|
const bridge_adjacency = {};
|
|
for (let bridge of bridges) {
|
|
const keys = bridge.map(Point.key);
|
|
assert(endpoint_position_map.hasOwnProperty(keys[0]));
|
|
assert(endpoint_position_map.hasOwnProperty(keys[1]));
|
|
const xs = keys.map((x) => endpoint_position_map[x].index);
|
|
addEdgeToAdjacency([Point.key(xs[0]), xs[1]], bridge_adjacency);
|
|
addEdgeToAdjacency([Point.key(xs[1]), xs[0]], bridge_adjacency);
|
|
}
|
|
// Actually extract strokes. Any given path segment index should appear on
|
|
// exactly one stroke; if it is not on a stroke, we log a warning.
|
|
const extracted_indices = {};
|
|
const strokes = [];
|
|
for (let attempt = 0; attempt < 3; attempt++) {
|
|
let missed = false;
|
|
for (var i = 0; i < paths.length; i++) {
|
|
for (var j = 0; j < paths[i].length; j++) {
|
|
const index = [i, j];
|
|
if (extracted_indices[Point.key(index)]) {
|
|
continue;
|
|
}
|
|
const attempt_one = attempt === 0;
|
|
const stroke = extractStroke(paths, endpoint_map, bridge_adjacency, log,
|
|
extracted_indices, index, attempt_one);
|
|
if (stroke === undefined) {
|
|
missed = true;
|
|
continue;
|
|
}
|
|
strokes.push(stroke);
|
|
}
|
|
}
|
|
if (!missed) {
|
|
return strokes;
|
|
}
|
|
}
|
|
log.push({cls: 'error',
|
|
message: 'Stroke extraction missed some path segments.'});
|
|
return strokes;
|
|
}
|
|
|
|
// Exports go below this fold.
|
|
|
|
if (this.stroke_extractor !== undefined) {
|
|
throw new Error('Redefining stroke_extractor global!');
|
|
}
|
|
this.stroke_extractor = {};
|
|
|
|
this.stroke_extractor.getBridges = (glyph, classifier) => {
|
|
assert(glyph.stages.path)
|
|
const paths = svg.convertSVGPathToPaths(glyph.stages.path);
|
|
const endpoints = [];
|
|
for (let i = 0; i < paths.length; i++) {
|
|
for (let j = 0; j < paths[i].length; j++) {
|
|
endpoints.push(new Endpoint(paths, [i, j]));
|
|
}
|
|
}
|
|
const bridges = getBridges(endpoints, classifier || handTunedClassifier);
|
|
return {endpoints: endpoints, bridges: bridges};
|
|
}
|
|
|
|
this.stroke_extractor.getStrokes = (glyph) => {
|
|
assert(glyph.stages.path)
|
|
assert(glyph.stages.bridges)
|
|
const paths = svg.convertSVGPathToPaths(glyph.stages.path);
|
|
const endpoints = [];
|
|
for (let i = 0; i < paths.length; i++) {
|
|
for (let j = 0; j < paths[i].length; j++) {
|
|
endpoints.push(new Endpoint(paths, [i, j]));
|
|
}
|
|
}
|
|
const log = [];
|
|
const stroke_paths = extractStrokes(
|
|
paths, endpoints, glyph.stages.bridges, log);
|
|
const strokes = stroke_paths.map((x) => svg.convertPathsToSVGPath([x]));
|
|
return {log: log, strokes: strokes};
|
|
}
|