"use strict"; Meteor.startup(() => { const input = new convnetjs.Vol(1, 1, 8 /* feature vector dimensions */); const net = new convnetjs.Net(); net.fromJSON(NEURAL_NET_TRAINED_FOR_STROKE_EXTRACTION); const weight = 0.8; const trainedClassifier = (features) => { input.w = features; const softmax = net.forward(input).w; return softmax[1] - softmax[0]; } stroke_extractor.combinedClassifier = (features) => { return stroke_extractor.handTunedClassifier(features) + weight*trainedClassifier(features); } });