diff --git a/scripts/convert.py b/scripts/convert.py
deleted file mode 100755
index 6262c9db..00000000
--- a/scripts/convert.py
+++ /dev/null
@@ -1,14 +0,0 @@
-#!/usr/bin/python
-'''
-Converts a font from one format to another. The input and output formats are
-inferred based on file names. This script is a thin wrapper around the fontforge
-Python library, which it depends on.
-'''
-
-import fontforge
-import sys
-
-if __name__ == '__main__':
- assert len(sys.argv) == 3, 'Usage: ./convert.py '
- font = fontforge.open(sys.argv[1])
- font.generate(sys.argv[2])
diff --git a/scripts/main.py b/scripts/main.py
deleted file mode 100755
index e10c3fa8..00000000
--- a/scripts/main.py
+++ /dev/null
@@ -1,63 +0,0 @@
-#!/usr/bin/python
-'''
-Extracts one or more characters from each of the svg fonts in the SVG directory
-and prints data for them to stderr in JSON format. The output data is a list of
-dictionaries with the following keys:
- - name: string glyph name
- - d: string SVG path data
- - extractor: stroke data + diagnostics (see stroke_extractor for details)
-'''
-import argparse
-import json
-import sys
-
-import stroke_extractor
-
-
-def get_html_attribute(glyph, attribute):
- '''
- Takes an HTML SVG object and returns the path data from the "d" field.
- '''
- left = ' {0}="'.format(attribute)
- start = max(glyph.find(left), glyph.find(left.replace(' ', '\n')))
- end = glyph.find('"', start + len(left))
- assert start >= 0 and end >= 0, \
- 'Glyph missing {0}=".*" block:\n{1}'.format(attribute, repr(glyph))
- return glyph[start + len(left):end].replace('\n', ' ')
-
-
-if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('-f', '--font', dest='font',
- help='SVG font to read characters from.', required=True)
- parser.add_argument('-m', '--manual', dest='manual',
- help='Manual corrections to the algorithm.')
- (options, args) = parser.parse_known_args()
- if options.manual is not None:
- assert len(args) == 1, 'Manual corrections can only apply to one glyph!'
- options.manual = json.loads(options.manual)
- # For each glyph name among the positional arguments, extract the glyph with
- # that name from the SVG font.
- glyphs = []
- with open(options.font) as font:
- data = font.read()
- for glyph_name in args:
- index = data.find('glyph-name="{0}"'.format(glyph_name))
- if index < 0:
- print >> sys.stderr, '{0}: missing {1}'.format(options.font, glyph_name)
- continue
- (left, right) = (' ')
- (start, end) = (data.rfind(left, 0, index), data.find(right, index))
- if start < 0 or end < 0:
- print >> sys.stderr, '{0}: malformed {1}'.format(options.font, glyph_name)
- continue
- glyphs.append((glyph_name, data[start:end + len(right)]))
- # Print data for each of the extracted glyphs in JSON format.
- result = []
- for (glyph_name, glyph) in glyphs:
- d = get_html_attribute(glyph, 'd')
- assert d, 'Missing glyph-name or d for glyph:\n{0}'.format(glyph)
- extractor = stroke_extractor.StrokeExtractor(glyph_name, d, options.manual)
- data = {'name': glyph_name, 'd': d, 'extractor': extractor.get_data()}
- result.append(data)
- print json.dumps(result)
diff --git a/scripts/stroke_extractor.py b/scripts/stroke_extractor.py
deleted file mode 100644
index 509f75d6..00000000
--- a/scripts/stroke_extractor.py
+++ /dev/null
@@ -1,400 +0,0 @@
-'''
-Given an svg.path.Path object representing a glyph, a StrokeExtractor instance
-will break it down into a list of svg.path.Path objects, one for each stroke.
-
-The algorithm we currently use is a 'corner-and-bridge' algorithm. First, we
-detect possible corners in the path object. 'Corners' are points where the
-derivative of the curve angle is sharply negative - that is, points at which
-the curve is very non-convex. If two strokes cross eachother, we should detect
-four corners, one at each place at the outline of the intersection.
-
-(Note that much more complex configurations are possible - for example a stroke
-may end at the middle of another stroke, or many strokes may intersect to form
-a star shape.)
-
-We then detect 'bridges', which are edges between corners where the stroke
-entering one corner may continue to the stroke exiting the other corner. In our
-two-strokes-crossing example, we should detect four bridges connecting the four
-corners to form a simple quadrilateral.
-
-Finally, we traverse the path, usually following SVG path elements, but taking
-bridges when they are inline with the previously traversed path element. The
-output of this traversal is our final stroke decomposition.
-
-At many points during this algorithm we may detect various anomalies. We log
-these anomalies so that they can be reviewed manually.
-'''
-import collections
-import copy
-import math
-import svg.path
-
-
-MAX_BRIDGE_DISTANCE = 128
-MAX_BRIDGE_SPLIT_DISTANCE = 16
-MIN_CORNER_ANGLE = 0.1*math.pi
-MIN_CORNER_TANGENT_DISTANCE = 4
-
-# Some glyphs in the font have strokes that incorrectly curve clockwise.
-# To handle these glyphs, we store a list of glyph names and stroke indices that
-# should be reversed during the call to split_and_orient_path.
-PATH_ORDER_MISTAKES = {
- 'U9BFE': [4, 5, 6], 'U9BD2': [0, 1, 2], 'U9BB7': [0, 1, 2],
- 'U9BA7': [0, 1, 2], 'U97CA': [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14],
- 'U9793': [4, 5, 6], 'U9767': [4, 5, 6, 7, 8]}
-
-
-def area(path):
- '''
- Returns the area of the path. The result is positive iff the path winds in
- the counter-clockwise direction.
- '''
- def area_under_curve(x):
- return (x.start.real - x.end.real)*(x.start.imag + x.end.imag)
- return int(sum(map(area_under_curve, path))/2)
-
-
-def split_and_orient_path(name, path):
- '''
- Takes a non-empty svg.path.Path object that may contain multiple closed loops.
- Returns a list of svg.path.Path objects that are all minimal closed curve.
- The returned paths will be the way a TTF glyph should be: exterior curves
- will be counter-clockwise and interior curves will be clockwise.
- '''
- paths = [[path[0]]]
- for element in path[1:]:
- if element.start == element.end:
- continue
- if element.start != paths[-1][-1].end:
- paths.append([])
- paths[-1].append(element)
- # Determine if this glyph is oriented in the wrong direction by computing the
- # area of each glyph. The glyph with maximum |area| should have positive area,
- # because it must be an exterior path.
- def reverse(path):
- for element in path:
- (element.start, element.end) = (element.end, element.start)
- return reversed(path)
- areas = [area(path) for path in paths]
- max_area = max((abs(area), area) for area in areas)[1]
- if max_area < 0:
- paths = map(reverse, paths)
- for i in PATH_ORDER_MISTAKES.get(name, []):
- paths[i] = reverse(list(paths[i]))
- return [svg.path.Path(*path) for path in paths]
-
-
-class Corner(object):
- def __init__(self, paths, index):
- self.index = index
- (i, j) = index
- self.path = paths[i]
- self.point = paths[i][j].start
- (self.tangent1, self.tangent2) = self._get_tangents()
- self.angle = self._get_angle(self.tangent1, self.tangent2)
-
- def bridge(self, other):
- '''
- Returns true if a stroke continues from this corner point to the other.
- Internally, this function builds a 7-dimensional feature vector and then
- calls a classifier. The 7 features are:
- features[0]: The angle between the edge in and the bridge
- features[1]: The angle between the bridge and the edge out
- features[2]: The angle between the cross stroke out and the bridge
- features[3]: The angle between the cross stroke in and the bridge
- features[4]: The angle at this corner
- features[5]: The angle at the other corner
- features[6]: The length of the bridge
-
- At an ideal bridge, features[0] and features[1] should be very close to 0,
- meaning that the stroke can continue smoothly from this corner to the other.
- features[2] + features[3] is close to pi, meaning that the stroke in
- is straight, and features[6], the distance, is small.
-
- This ideal configuration might look like this diagram:
-
- / ^
- / /
- <-O S--
-
- where S is this corner and O is the other and the arrows indicate the
- direction of the curve.
- '''
- diff = other.point - self.point
- length = abs(diff)
- if length == 0 or length > MAX_BRIDGE_DISTANCE:
- return False
- # NOTE: These angle features make sense even if points are on different
- # subpaths of the glyph path! Because of our preprocessing, exterior glyph
- # paths are clockwise while interior paths are counter-clockwise, so angle
- # features around a bridge are the same whether or not the two sides of
- # the bridge are on the same path.
- features = (
- self._get_angle(self.tangent1, diff),
- self._get_angle(diff, other.tangent2),
- self._get_angle(diff, self.tangent2),
- self._get_angle(other.tangent1, diff),
- self.angle,
- other.angle,
- length,
- )
- # TODO(skishore): Log this sample and use it to train the classifier.
- result = self._run_classifier(features)
- return result
-
- def _get_angle(self, vector1, vector2):
- ratio = vector2/vector1 if vector1 else 0
- return math.atan2(ratio.imag, ratio.real)
-
- def _get_tangents(self):
- segment1 = self.path[self.index[1] - 1]
- tangent1 = segment1.end - segment1.start
- if (type(segment1) == svg.path.QuadraticBezier and
- abs(segment1.end - segment1.control) > MIN_CORNER_TANGENT_DISTANCE):
- tangent1 = segment1.end - segment1.control
- segment2 = self.path[self.index[1]]
- tangent2 = segment2.end - segment2.start
- if (type(segment2) == svg.path.QuadraticBezier and
- abs(segment2.control - segment2.start) > MIN_CORNER_TANGENT_DISTANCE):
- tangent2 = segment2.control - segment2.start
- return (tangent1, tangent2)
-
- def _run_classifier(self, features):
- # TODO(skishore): Replace these inequalities with a trained classifier.
- alignment = abs(features[0]) + abs(features[1])
- incidence = abs(features[2] + features[3] + math.pi)
- short = features[6] < MAX_BRIDGE_DISTANCE/2
- clean = alignment < 0.1*math.pi or alignment + incidence < 0.2*math.pi
- cross = all([
- features[0] > 0,
- features[1] > 0,
- features[2] + features[3] < -0.5*math.pi,
- ])
- result = 0
- if features[2] < 0 and features[3] < 0 and (clean or (short and cross)):
- result = (1 if short else 0.75) if clean else 0.5
- return result
-
-
-class StrokeExtractor(object):
- def __init__(self, name, d, manual=None):
- self.name = name
- self.messages = []
- self.paths = split_and_orient_path(name, svg.path.parse_path(d))
- self.corners = self.get_corners()
- self.bridges = self.get_bridges()
- if manual:
- self._default_corners = copy.deepcopy(self.corners)
- self._default_bridges = copy.deepcopy(self.bridges)
- self.apply_manual_corrections(manual)
- else:
- self._default_corners = self.corners
- self._default_bridges = self.bridges
- (self.strokes, self.stroke_adjacency) = self.extract_strokes()
-
- def apply_manual_corrections(self, manual):
- indices = {}
- for (i, path) in enumerate(self.paths):
- for (j, element) in enumerate(path):
- index = (i, j)
- indices[element.start] = index
- if index in self.corners:
- assert element.start == self.corners[index].point
-
- def get_index(pair):
- result = indices[pair[0] + pair[1]*1j]
- if result not in self.corners:
- self.corners[result] = Corner(self.paths, result)
- return result
-
- for bridge in manual.get('bridges_added', []):
- (index1, index2) = map(get_index, bridge)
- self.bridges[index1].add(index2)
- self.bridges[index2].add(index1)
- for bridge in manual.get('bridges_removed', []):
- (index1, index2) = map(get_index, bridge)
- self.bridges[index1].remove(index2)
- self.bridges[index2].remove(index1)
- for (index, others) in self.bridges.items():
- if not others:
- del self.bridges[index]
-
- def extract_stroke(self, extracted, start):
- '''
- Given a path, a list of corners, and an adjacency list representation of
- bridges between then, extract a stroke that starts at the given index
- and add the indices of all elements on that stroke to extracted.
-
- This method will return a pair (path, corners), where the first element is
- an svg.path.Path object representing the stroke and the second is a list of
- corners that appear on that stroke. The corners list will have duplicates if
- the stroke loops back on itself, which indicates a mistake somewhere.
-
- This method will fail if, when following edges the the initial path element,
- we cross a bridge and enter a stroke that has already been extracted. If so,
- the path we return will be None.
-
- NOTE: We deliberately avoid using bridge directionality in this algorithm
- so that we can handle manually added bridges.
- '''
- current = start
- corners = []
- path = svg.path.Path()
- visited = set()
-
- def advance(index):
- return (index[0], (index[1] + 1) % len(self.paths[index[0]]))
-
- def angle(index, bridge):
- tangent = self.corners[index].tangent1
- ratio = (self.corners[bridge].point - self.corners[index].point)/tangent
- return math.atan2(ratio.imag, ratio.real)
-
- while True:
- # Add the current stroke element to the path and advance along it.
- path.append(self.paths[current[0]][current[1]])
- visited.add(current)
- current = advance(current)
- # If there is a bridge aligned with the stroke element that we advanced
- # over, advance over that bridge as well. If there are multiple bridges,
- # choose the one that is most aligned.
- if current in self.bridges:
- next = sorted(self.bridges[current], key=lambda x: angle(current, x))[0]
- corners.extend([self.corners[current], self.corners[next]])
- path.append(svg.path.Line(
- start=self.corners[current].point, end=self.corners[next].point))
- current = next
- # Check if we either closed the loop or hit an already extracted stroke.
- if current == start:
- extracted.update(visited)
- return (path, corners)
- elif current in visited or current in extracted:
- return (None, [])
-
- def extract_strokes(self):
- '''
- Returns a pair (strokes, stroke_adjacency), where the first element is a
- list of svg.path.Path objects that decompose this glyph into strokes and the
- second is an adjacency-list representation of the indices of strokes which
- share corner points.
-
- This method will log if some path elements do not appear on any stroke.
- '''
- extracted = set()
- strokes = []
- stroke_adjacency = collections.defaultdict(set)
- corner_adjacency = collections.defaultdict(set)
- for i, path in enumerate(self.paths):
- for j, element in enumerate(path):
- index = (i, j)
- if index not in extracted:
- (stroke, corners) = self.extract_stroke(extracted, index)
- if stroke is None:
- self.log('Stroke extraction missed some path elements!')
- continue
- stroke_index = len(strokes)
- strokes.append(stroke)
- corner_indices = set(corner.index for corner in corners)
- if len(corner_indices) < len(corners):
- self.log('Stroke {0} is self-intersecting!'.format(stroke_index))
- for corner_index in corner_indices:
- for other_index in corner_adjacency[corner_index]:
- stroke_adjacency[other_index].add(stroke_index)
- stroke_adjacency[stroke_index].add(other_index)
- corner_adjacency[corner_index].add(stroke_index)
- return (strokes, stroke_adjacency)
-
- def get_bridges(self):
- '''
- Returns an adjacency list of bridges. A bridge is a pair of corner indices
- through which a stroke continues. The adjacency list is undirected: for any
- two corner indices a and b, if b in result[a], a in result[b].
- '''
- # Collect bridge candidates scored by our bridge classifier.
- candidates = []
- for corner in self.corners.itervalues():
- for other in self.corners.itervalues():
- confidence = corner.bridge(other)
- if confidence > 0:
- candidates.append((confidence, corner.index, other.index))
- candidates.sort(reverse=True)
- # Add bridges to the set of bridges in order of decreasing confidence.
- # However, we do NOT add bridges that would either a) form a triangle with
- # an existing bridge, or b) that are long and should be multiple bridges.
- bridges = set()
- for (confidence, index1, index2) in candidates:
- other1 = set(b for (a, b) in bridges if a == index1)
- other2 = set(b for (a, b) in bridges if a == index2)
- if (other1.intersection(other2) or
- self.should_split_bridge((index1, index2))):
- continue
- bridges.add((index1, index2))
- bridges.add((index2, index1))
- # Convert the result to an adjacency list. Having more than two bridges at
- # any given corner results in a warning.
- result = collections.defaultdict(set)
- for (index1, index2) in bridges:
- result[index1].add(index2)
- if len(result[index1]) == 3:
- self.log('More than two bridges at corner {0}'.format(
- self.corners[index1].point))
- return result
-
- def get_corners(self):
- '''
- Returns a dict mapping indices to corners at that index. Each corner is a
- point on the curve where the path makes a sharp negative angle. Since the
- path has a small positive average angle, it is non-convex at these corners.
- '''
- result = {}
- for i, path in enumerate(self.paths):
- candidates = [Corner(self.paths, (i, j)) for j in xrange(len(path))]
- for corner in filter(lambda x: x.angle < -MIN_CORNER_ANGLE, candidates):
- result[corner.index] = corner
- return result
-
- def get_data(self):
- '''
- Returns a representation of the data extracted from this glyph that can be
- serialized to JSON. The result is a dictionary with the following keys:
- - points: list of [x, y] pairs of endpoints on the glyph's SVG path
- - corners: list of [x, y] pairs of points that are also corners
- - bridges: list of pairs of corners [[x1, y1], [x2, y2]] that are bridges
- - strokes: list of SVG path data strings for the extracted strokes
- '''
- pair = lambda point: [int(point.real), int(point.imag)]
- return {
- 'points': [pair(element.end) for path in self.paths for element in path],
- 'corners': [
- pair(corner.point)
- for corner in self._default_corners.itervalues()
- ],
- 'bridges': [
- [pair(self.corners[index1].point), pair(self.corners[index2].point)]
- for (index1, others) in self._default_bridges.iteritems()
- for index2 in others if index1 < index2
- ],
- 'strokes': [stroke.d() for stroke in self.strokes],
- }
-
- def log(self, message):
- self.messages.append(message)
-
- def should_split_bridge(self, bridge):
- '''
- Returns true if there is some corner that is too close to the middle of the
- given bridge. When this occurs, the gap between these indices should usually
- be spanned by multiple bridges instead.
- '''
- (index1, index2) = bridge
- base = self.corners[index1].point
- diff = self.corners[index2].point - base
- for corner in self.corners.itervalues():
- if corner.index in bridge:
- continue
- t = ((corner.point.real - base.real)*diff.real +
- (corner.point.imag - base.imag)*diff.imag)/(abs(diff)**2)
- distance_to_line = abs(self.corners[index1].point + t*diff - corner.point)
- if 0 < t < 1 and distance_to_line < MAX_BRIDGE_SPLIT_DISTANCE:
- return True
- return False