package proc import ( "encoding/binary" "fmt" "strings" "github.com/go-delve/delve/pkg/dwarf/frame" "github.com/go-delve/delve/pkg/dwarf/op" "github.com/go-delve/delve/pkg/dwarf/regnum" ) // ebreak instruction: 0x00100073 var riscv64BreakInstruction = []byte{0x73, 0x00, 0x10, 0x00} // c.ebreak instruction: 0x9002 var riscv64CompressedBreakInstruction = []byte{0x02, 0x90} // RISCV64Arch returns an initialized RISCV64 struct. func RISCV64Arch(goos string) *Arch { return &Arch{ Name: "riscv64", ptrSize: 8, maxInstructionLength: 4, breakpointInstruction: riscv64CompressedBreakInstruction, altBreakpointInstruction: riscv64BreakInstruction, breakInstrMovesPC: false, derefTLS: false, prologues: nil, fixFrameUnwindContext: riscv64FixFrameUnwindContext, switchStack: riscv64SwitchStack, regSize: riscv64RegSize, RegistersToDwarfRegisters: riscv64RegistersToDwarfRegisters, addrAndStackRegsToDwarfRegisters: riscv64AddrAndStackRegsToDwarfRegisters, DwarfRegisterToString: riscv64DwarfRegisterToString, inhibitStepInto: func(*BinaryInfo, uint64) bool { return false }, asmDecode: riscv64AsmDecode, usesLR: true, PCRegNum: regnum.RISCV64_PC, SPRegNum: regnum.RISCV64_SP, asmRegisters: riscv64AsmRegisters, RegisterNameToDwarf: nameToDwarfFunc(regnum.RISCV64NameToDwarf), RegnumToString: regnum.RISCV64ToName, debugCallMinStackSize: 288, // TODO maxRegArgBytes: 16*8 + 16*8, // 16 int argument registers plus 16 float argument registers } } func riscv64FixFrameUnwindContext(fctxt *frame.FrameContext, pc uint64, bi *BinaryInfo) *frame.FrameContext { a := bi.Arch if a.sigreturnfn == nil { a.sigreturnfn = bi.lookupOneFunc("runtime.sigreturn") } if (fctxt == nil) || ((a.sigreturnfn != nil) && (pc >= a.sigreturnfn.Entry) && (pc < a.sigreturnfn.End)) { // When there's no frame descriptor entry use BP (the frame pointer) instead // - return register is [bp + a.PtrSize()] (i.e. [cfa-a.PtrSize()]) // - cfa is bp + a.PtrSize()*2 // - bp is [bp] (i.e. [cfa-a.PtrSize()*2]) // - sp is cfa // When the signal handler runs it will move the execution to the signal // handling stack (installed using the sigaltstack system call). // This isn't a proper stack switch: the pointer to g in TLS will still // refer to whatever g was executing on that thread before the signal was // received. // Since go did not execute a stack switch the previous value of sp, pc // and bp is not saved inside g.sched, as it normally would. // The only way to recover is to either read sp/pc from the signal context // parameter (the ucontext_t* parameter) or to unconditionally follow the // frame pointer when we get to runtime.sigreturn (which is what we do // here). return &frame.FrameContext{ RetAddrReg: regnum.RISCV64_PC, Regs: map[uint64]frame.DWRule{ regnum.RISCV64_PC: { Rule: frame.RuleOffset, Offset: int64(-a.PtrSize()), }, regnum.RISCV64_FP: { Rule: frame.RuleOffset, Offset: int64(-2 * a.PtrSize()), }, regnum.RISCV64_SP: { Rule: frame.RuleValOffset, Offset: 0, }, }, CFA: frame.DWRule{ Rule: frame.RuleCFA, Reg: regnum.RISCV64_FP, Offset: int64(2 * a.PtrSize()), }, } } if a.crosscall2fn == nil { a.crosscall2fn = bi.lookupOneFunc("crosscall2") } if a.crosscall2fn != nil && pc >= a.crosscall2fn.Entry && pc < a.crosscall2fn.End { rule := fctxt.CFA if rule.Offset == crosscall2SPOffsetBad { rule.Offset += crosscall2SPOffset } fctxt.CFA = rule } // We assume that FP is the frame pointer and we want to keep it updated, // so that we can use it to unwind the stack even when we encounter frames // without descriptor entries. // If there isn't a rule already we emit one. if fctxt.Regs[regnum.RISCV64_FP].Rule == frame.RuleUndefined { fctxt.Regs[regnum.RISCV64_FP] = frame.DWRule{ Rule: frame.RuleFramePointer, Reg: regnum.RISCV64_FP, Offset: 0, } } if fctxt.Regs[regnum.RISCV64_LR].Rule == frame.RuleUndefined { fctxt.Regs[regnum.RISCV64_LR] = frame.DWRule{ Rule: frame.RuleRegister, Reg: regnum.RISCV64_LR, Offset: 0, } } return fctxt } const riscv64cgocallSPOffsetSaveSlot = 0x8 const riscv64prevG0schedSPOffsetSaveSlot = 0x10 func riscv64SwitchStack(it *stackIterator, callFrameRegs *op.DwarfRegisters) bool { if it.frame.Current.Fn == nil { if it.systemstack && it.g != nil && it.top { it.switchToGoroutineStack() return true } return false } switch it.frame.Current.Fn.Name { case "runtime.cgocallback_gofunc", "runtime.cgocallback", "runtime.asmcgocall", "crosscall2": // cgostacktrace is broken on riscv64, so do nothing here. case "runtime.goexit", "runtime.rt0_go", "runtime.mcall": // Look for "top of stack" functions. it.atend = true return true case "runtime.mstart": // Calls to runtime.systemstack will switch to the systemstack then: // 1. alter the goroutine stack so that it looks like systemstack_switch // was called // 2. alter the system stack so that it looks like the bottom-most frame // belongs to runtime.mstart // If we find a runtime.mstart frame on the system stack of a goroutine // parked on runtime.systemstack_switch we assume runtime.systemstack was // called and continue tracing from the parked position. if it.top || !it.systemstack || it.g == nil { return false } if fn := it.bi.PCToFunc(it.g.PC); fn == nil || fn.Name != "runtime.systemstack_switch" { return false } it.switchToGoroutineStack() return true default: if it.systemstack && it.top && it.g != nil && strings.HasPrefix(it.frame.Current.Fn.Name, "runtime.") && it.frame.Current.Fn.Name != "runtime.throw" && it.frame.Current.Fn.Name != "runtime.fatalthrow" { // The runtime switches to the system stack in multiple places. // This usually happens through a call to runtime.systemstack but there // are functions that switch to the system stack manually (for example // runtime.morestack). // Since we are only interested in printing the system stack for cgo // calls we switch directly to the goroutine stack if we detect that the // function at the top of the stack is a runtime function. it.switchToGoroutineStack() return true } } fn := it.bi.PCToFunc(it.frame.Ret) if fn == nil { return false } switch fn.Name { case "runtime.asmcgocall": if !it.systemstack { return false } // This function is called by a goroutine to execute a C function and // switches from the goroutine stack to the system stack. // Since we are unwinding the stack from callee to caller we have to switch // from the system stack to the goroutine stack. off, _ := readIntRaw(it.mem, uint64(callFrameRegs.SP()+riscv64cgocallSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize())) oldsp := callFrameRegs.SP() newsp := uint64(int64(it.stackhi) - off) // runtime.asmcgocall can also be called from inside the system stack, // in that case no stack switch actually happens if newsp == oldsp { return false } it.systemstack = false callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = uint64(int64(newsp)) return false case "runtime.cgocallback_gofunc": // For a detailed description of how this works read the long comment at // the start of $GOROOT/src/runtime/cgocall.go and the source code of // runtime.cgocallback_gofunc in $GOROOT/src/runtime/asm_riscv64.s // // When a C functions calls back into go it will eventually call into // runtime.cgocallback_gofunc which is the function that does the stack // switch from the system stack back into the goroutine stack // Since we are going backwards on the stack here we see the transition // as goroutine stack -> system stack. if it.systemstack { return false } it.loadG0SchedSP() if it.g0_sched_sp <= 0 { return false } // entering the system stack callFrameRegs.Reg(callFrameRegs.SPRegNum).Uint64Val = it.g0_sched_sp // reads the previous value of g0.sched.sp that runtime.cgocallback_gofunc saved on the stack it.g0_sched_sp, _ = readUintRaw(it.mem, uint64(callFrameRegs.SP()+riscv64prevG0schedSPOffsetSaveSlot), int64(it.bi.Arch.PtrSize())) it.systemstack = true return false } return false } func riscv64RegSize(regnum uint64) int { // All CPU registers are 64bit return 8 } func riscv64RegistersToDwarfRegisters(staticBase uint64, regs Registers) *op.DwarfRegisters { dregs := initDwarfRegistersFromSlice(int(regnum.RISCV64MaxRegNum()), regs, regnum.RISCV64NameToDwarf) dr := op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.RISCV64_PC, regnum.RISCV64_SP, regnum.RISCV64_FP, regnum.RISCV64_LR) dr.SetLoadMoreCallback(loadMoreDwarfRegistersFromSliceFunc(dr, regs, regnum.RISCV64NameToDwarf)) return dr } func riscv64AddrAndStackRegsToDwarfRegisters(staticBase, pc, sp, bp, lr uint64) op.DwarfRegisters { dregs := make([]*op.DwarfRegister, int(regnum.RISCV64_PC+1)) dregs[regnum.RISCV64_PC] = op.DwarfRegisterFromUint64(pc) dregs[regnum.RISCV64_SP] = op.DwarfRegisterFromUint64(sp) dregs[regnum.RISCV64_FP] = op.DwarfRegisterFromUint64(bp) dregs[regnum.RISCV64_LR] = op.DwarfRegisterFromUint64(lr) return *op.NewDwarfRegisters(staticBase, dregs, binary.LittleEndian, regnum.RISCV64_PC, regnum.RISCV64_SP, regnum.RISCV64_FP, regnum.RISCV64_LR) } func riscv64DwarfRegisterToString(i int, reg *op.DwarfRegister) (name string, floatingPoint bool, repr string) { name = regnum.RISCV64ToName(uint64(i)) if reg == nil { return name, false, "" } if strings.HasPrefix(name, "F") { return name, true, fmt.Sprintf("%#016x", reg.Uint64Val) } else { return name, false, fmt.Sprintf("%#016x", reg.Uint64Val) } }