Files
flame/lib/position.dart
Luan Nico d352c7af1c fix lint
2019-06-11 20:53:06 -03:00

227 lines
6.1 KiB
Dart

import 'dart:math' as math;
import 'dart:ui' as ui;
import 'package:box2d_flame/box2d.dart' as b2d;
/// An ordered pair representation (point, position, offset).
///
/// It differs from the default implementations provided (math.Point and ui.Offset) as it's mutable.
/// Also, it offers helpful converters and a some useful methods for manipulation.
/// It always uses double values to store the coordinates.
class Position {
/// Coordinates
double x, y;
/// Basic constructor
Position(this.x, this.y);
/// Creates a point at the origin
Position.empty() : this(0.0, 0.0);
/// Creates converting integers to double.
///
/// Internal representation is still using double, the conversion is made in the constructor only.
Position.fromInts(int x, int y) : this(x.toDouble(), y.toDouble());
/// Creates using an [ui.Offset]
Position.fromOffset(ui.Offset offset) : this(offset.dx, offset.dy);
/// Creates using an [ui.Size]
Position.fromSize(ui.Size size) : this(size.width, size.height);
/// Creates using an [math.Point]
Position.fromPoint(math.Point point) : this(point.x, point.y);
/// Creates using another [Position]; i.e., clones this position.
///
/// This is useful because this class is mutable, so beware of mutability issues.
Position.fromPosition(Position position) : this(position.x, position.y);
/// Creates using a [b2d.Vector2]
Position.fromVector(b2d.Vector2 vector) : this(vector.x, vector.y);
/// Adds the coordinates from another vector.
///
/// This method changes `this` instance and returns itself.
Position add(Position other) {
x += other.x;
y += other.y;
return this;
}
/// Substracts the coordinates from another vector.
///
/// This method changes `this` instance and returns itself.
Position minus(Position other) {
return add(other.clone().opposite());
}
Position times(double scalar) {
x *= scalar;
y *= scalar;
return this;
}
Position opposite() {
return times(-1.0);
}
Position div(double scalar) {
return times(1 / scalar);
}
double dotProduct(Position p) {
return x * p.x + y * p.y;
}
/// The length (or magnitude) of this vector.
double length() {
return math.sqrt(dotProduct(this));
}
/// Rotate around origin; [angle] in radians.
Position rotate(double angle) {
final double nx = math.cos(angle) * x - math.sin(angle) * y;
final double ny = math.sin(angle) * x + math.cos(angle) * y;
x = nx;
y = ny;
return this;
}
/// Rotate around origin; [angle] in degrees.
Position rotateDeg(double angle) {
return rotate(angle * math.pi / 180);
}
/// Change current rotation by delta angle; [angle] in radians.
Position rotateDelta(double radians) {
return rotate(angle() + radians);
}
/// Change current rotation by delta angle; [angle] in degrees.
Position rotateDeltaDeg(double degrees) {
return rotateDeg(angleDeg() + degrees);
}
/// Returns the angle of this vector from origin in radians.
double angle() {
return math.atan2(y, x);
}
/// Returns the angle of this vector from origin in degrees.
double angleDeg() {
return angle() * 180 / math.pi;
}
/// Returns the angle of this vector from another [Position] in radians.
double angleFrom(Position other) {
// Technically the origin is not a vector so you cannot find the angle between
// itself and another vector so just default to calculating the angle between
// the non-origin point and the origin to avoid division by zero
if (x == 0 && y == 0) {
return other.angle();
}
if (other.x == 0 && other.y == 0) {
return angle();
}
return math.acos(dotProduct(other) / (length() * other.length()));
}
/// Returns the angle of this vector from another [Position] in degrees.
double angleFromDeg(Position other) {
return angleFrom(other) * 180 / math.pi;
}
double distance(Position other) {
return clone().minus(other).length();
}
/// Changes the [length] of this vector to the one provided, without chaning direction.
///
/// If you try to scale the zero (empty) vector, it will remain unchanged, and no error will be thrown.
Position scaleTo(double newLength) {
final l = length();
if (l == 0) {
return this;
}
return times(newLength.abs() / l);
}
/// Normalizes this vector, without changing direction.
Position normalize() {
return scaleTo(1.0);
}
/// Limits the [length] of this vector to the one provided, without changing direction.
///
/// If this vector's length is bigger than [maxLength], it becomes [maxLength]; otherwise, nothing changes.
Position limit(double maxLength) {
final newLength = length().clamp(0.0, maxLength.abs());
return scaleTo(newLength);
}
ui.Offset toOffset() {
return ui.Offset(x, y);
}
ui.Size toSize() {
return ui.Size(x, y);
}
math.Point toPoint() {
return math.Point(x, y);
}
b2d.Vector2 toVector() {
return b2d.Vector2(x, y);
}
Position clone() {
return Position.fromPosition(this);
}
bool equals(Position p) {
return p.x == x && p.y == y;
}
@override
bool operator ==(other) {
return other is Position && equals(other);
}
/// Negate.
Position operator -() => clone()..opposite();
/// Subtract two vectors.
Position operator -(Position other) => clone()..minus(other);
/// Add two vectors.
Position operator +(Position other) => clone()..add(other);
/// Scale.
Position operator /(double scale) => clone()..div(scale);
/// Scale.
Position operator *(double scale) => clone()..times(scale);
@override
int get hashCode => toString().hashCode;
@override
String toString() {
return '($x, $y)';
}
static ui.Rect rectFrom(Position topLeft, Position size) {
return ui.Rect.fromLTWH(topLeft.x, topLeft.y, size.x, size.y);
}
static ui.Rect bounds(List<Position> pts) {
final double minx = pts.map((e) => e.x).reduce(math.min);
final double maxx = pts.map((e) => e.x).reduce(math.max);
final double miny = pts.map((e) => e.y).reduce(math.min);
final double maxy = pts.map((e) => e.y).reduce(math.max);
return ui.Rect.fromPoints(ui.Offset(minx, miny), ui.Offset(maxx, maxy));
}
}